Complete integrability of derivative nonlinear Schrodinger-type equations

被引:33
|
作者
Tsuchida, T [1 ]
Wadati, M [1 ]
机构
[1] Univ Tokyo, Grad Sch Sci, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan
关键词
D O I
10.1088/0266-5611/15/5/317
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study matrix generalizations of derivative nonlinear Schrodinger-type equations, which were shown by Olver and Sokolov to possess a higher symmetry. We prove that two of them are 'C-integrable' and the rest of them are 'S-integrable' in Calogero's terminology.
引用
收藏
页码:1363 / 1373
页数:11
相关论文
共 50 条
  • [1] THE LAX REPRESENTATION AND COMPLETE-INTEGRABILITY OF THE GENERALIZED NONLINEAR SCHRODINGER-TYPE MODEL
    SIDORENKO, YM
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1985, (12): : 17 - 20
  • [2] ON A CLASS OF DERIVATIVE NONLINEAR SCHRODINGER-TYPE EQUATIONS IN TWO SPATIAL DIMENSIONS
    Arbunich, Jack
    Klein, Christian
    Sparber, Christof
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2019, 53 (05): : 1477 - 1505
  • [3] On Nonlinear Schrodinger-Type Equations with Nonlinear Damping
    Antonelli, Paolo
    Carles, Remi
    Sparber, Christof
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (03) : 740 - 762
  • [4] Nonlinear singular Schrodinger-type equations
    Lange, H
    Poppenberg, M
    Teismann, H
    NONLINEAR THEORY OF GENERALIZED FUNCTIONS, 1999, 401 : 113 - 128
  • [5] The coupled nonlinear Schrodinger-type equations
    Abdelrahman, Mahmoud A. E.
    Hassan, S. Z.
    Inc, Mustafa
    MODERN PHYSICS LETTERS B, 2020, 34 (06):
  • [6] On nonparaxial nonlinear Schrodinger-type equations
    Cano, B.
    Duran, A.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 373 (373)
  • [7] NEW HIERARCHIES OF DERIVATIVE NONLINEAR SCHRODINGER-TYPE EQUATION
    Wu, Zhiwei
    He, Jingsong
    ROMANIAN REPORTS IN PHYSICS, 2016, 68 (01) : 79 - 98
  • [8] Simulation of coherent structures in nonlinear Schrodinger-type equations
    Alonso-Mallo, I.
    Duran, A.
    Reguera, N.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (21) : 8180 - 8198
  • [9] Exact solutions to a class of nonlinear Schrodinger-type equations
    Zhang, Jin-Liang
    Wang, Ming-Liang
    PRAMANA-JOURNAL OF PHYSICS, 2006, 67 (06): : 1011 - 1022