Direct minimization of the discontinuous least-squares spectral element method for viscoelastic fluids

被引:17
作者
Gerritsma, Marc I. [1 ]
机构
[1] Delft Univ Technol, NL-2629 HS Delft, Netherlands
关键词
viscoelastic flows; spectral element method; discontinuous least squares formulation; direct minimization; LSQR;
D O I
10.1007/s10915-005-9042-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper direct minimization of the discontinuous least-squares spectral element formulation is described. The method will beapplied to the Upper Convected Maxwell (UCM) model which describes a viscoelastic fluid. The new ideas presented in this paper consist of the weak coupling of the fluxes in the least-squares formulations instead of imposing weak continuity of the dependent variables. Furthermore, direct minimization is employed instead of the conventional variational least-squares formulation. The resulting system is solved iteratively using LSQR.
引用
收藏
页码:245 / 256
页数:12
相关论文
共 19 条
[1]   The flow of viscoelastic fluids past a cylinder: finite-volume high-resolution methods [J].
Alves, MA ;
Pinho, FT ;
Oliveira, PJ .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2001, 97 (2-3) :207-232
[2]  
BJORCK A, 1990, HDB NUMERICAL ANAL, V1
[3]   LEAST-SQUARES METHODS FOR THE VELOCITY-PRESSURE-STRESS FORMULATION OF THE STOKES EQUATIONS [J].
BOCHEV, PB ;
GUNZBURGER, MD .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1995, 126 (3-4) :267-287
[4]  
CANUTO C., 1987, Spectral Methods in Fluid Dynamics
[5]   The use of Chebyshev polynomials in the space-time least-squares spectral element method [J].
De Maerschalck, B ;
Gerritsma, MI .
NUMERICAL ALGORITHMS, 2005, 38 (1-3) :173-196
[6]   Least-squares finite element methods and algebraic multigrid solvers for linear hyperbolic PDEs [J].
De Sterck, H ;
Manteuffel, TA ;
McCormick, SF ;
Olson, L .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2004, 26 (01) :31-54
[7]   Compatible spectral approximations for the velocity-pressure-stress formulation of the Stokes problem [J].
Gerritsma, MI ;
Phillips, TN .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1999, 20 (04) :1530-1550
[8]  
GERRITSMA MI, 2002, J SCI COMPUT, V17, P323
[9]  
HOITINGA W, 2005, IN PRESS DIRECT MINI
[10]   NONOSCILLATORY AND NONDIFFUSIVE SOLUTION OF CONVECTION PROBLEMS BY THE ITERATIVELY REWEIGHTED LEAST-SQUARES FINITE-ELEMENT METHOD [J].
JIANG, BN .
JOURNAL OF COMPUTATIONAL PHYSICS, 1993, 105 (01) :108-121