Dynamics of a Nonlocal Dispersal Model with a Nonlocal Reaction Term

被引:10
作者
Ma, Li [1 ,2 ]
Guo, Shangjiang [1 ]
Chen, Ting [1 ]
机构
[1] Hunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R China
[2] Gannan Normal Univ, Coll Math & Comp, Ganzhou 341000, Peoples R China
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2018年 / 28卷 / 03期
关键词
Nonlocal dispersal model; positive steady state solution; nonlocal reaction term; bifurcation; sub-supersolution method; Lyapunov-Schmidt reduction; SELECTION-MIGRATION MODEL; SPATIOTEMPORAL PATTERNS; PRINCIPAL EIGENVALUES; MONOSTABLE EQUATIONS; ASYMPTOTIC-BEHAVIOR; LOGISTIC EQUATION; SPREADING SPEEDS; DIFFUSION; BIFURCATION; STABILITY;
D O I
10.1142/S0218127418500335
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study a class of nonlocal dispersal problem with a nonlocal term arising in population dynamics: {u(t) = Du + u[lambda - f(u) - integral(Omega) K(x, y)g(u(y))dy], in Omega x (0, +infinity), u(x, 0) = u(0)(x) >= 0, in Omega, u = 0, in R-N\Omega x (0, +infinity), where Omega subset of R-N (N >= 1) is a bounded domain, lambda is an element of R, Du(x, t) = integral(Omega) J(x - y)[u(y, t)-u(x, t)]dy represents the nonlocal dispersal operator with continuous and non-negative dispersal kernel. The kernel K is an element of C((Omega) over bar x (Omega) over bar) is assumed to be non-negative and is allowed to have a degeneracy in a smooth subdomain Omega(0) of Omega. When K is either positive or vanishes in a subdomain, we respectively investigate the existence, multiplicity and asymptotical stability of positive steady states under the local/global variation of parameter by means of sub-supersolution method, Lyapunov-Schmidt reduction, and bifurcation theory.
引用
收藏
页数:18
相关论文
共 53 条
[1]  
Allegretto W., 1997, FUNKC EKVACIOJ-SER I, V40, P395
[2]  
Andreu-Vaillo F., 2010, MATH SURVEYS MONOGR
[3]  
[Anonymous], 1990, Differential Integral Equations
[4]   Existence, uniqueness and stability of the stationary solution to a nonlocal evolution equation arising in population dispersal [J].
Bates, Peter W. ;
Zhao, Guangyu .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 332 (01) :428-440
[5]   Traveling waves in a convolution model for phase transitions [J].
Bates, PW ;
Fife, PC ;
Ren, XF ;
Wang, XF .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1997, 138 (02) :105-136
[7]   Asymptotic behavior for nonlocal diffusion equations [J].
Chasseigne, Emmanuel ;
Chaves, Manuela ;
Rossi, Julio D. .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2006, 86 (03) :271-291
[8]  
Corrêa FJSA, 2011, ADV DIFFERENTIAL EQU, V16, P623
[9]   How to approximate the heat equation with neumann boundary conditions by nonlocal diffusion problems [J].
Cortazar, Carmen ;
Elgueta, Manuel ;
Rossi, Julio D. ;
Wolanski, Noemi .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2008, 187 (01) :137-156
[10]   Boundary fluxes for nonlocal diffusion [J].
Cortazar, Carmen ;
Elgueta, Manuel ;
Rossi, Julio D. ;
Wolanski, Noemi .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 234 (02) :360-390