COMPACTION IN A CLASS OF NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS

被引:0
作者
Abbas, Tasawar [1 ]
Ul Hassan, Qazi Mahmood [1 ]
Hussain, Anwar [2 ]
Fatima, Maheen [3 ]
Ahmad, Bilal [1 ]
机构
[1] Univ Wah, Dept Math, Punjab 47040, Pakistan
[2] Natl Univ Sci & Technol, Sch Mech & Mfg Engn, Dept Mech Engn, Islamabad, Pakistan
[3] Comsats Univ, Dept Math, Lahore Campus, Lahore, Pakistan
关键词
Non-linear PDEs; solitons; exact solution; SOLITARY-WAVE SOLUTIONS; SOLITONS;
D O I
10.46939/J.Sci.Arts-22.4-a13
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We inspect the compaction structure in a class of nonlinear dispersive conditions in this article. The compaction sort of lone waves free of exponential tails and width self-sufficient of abundance is formally created. We further set up particular examples of answers for the defocusing parts of these models.
引用
收藏
页码:919 / 928
页数:10
相关论文
共 22 条
[2]  
Adomian G., 1994, Solving Frontier Problems of Physics: The Decomposition Method
[3]   Particle methods for dispersive equations [J].
Chertock, A ;
Levy, D .
JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 171 (02) :708-730
[4]   Compacton solutions in a class of generalized fifth-order Korteweg-de Vries equations [J].
Cooper, F ;
Hyman, JM ;
Khare, A .
PHYSICAL REVIEW E, 2001, 64 (02) :13
[5]   Shape profile of compactlike discrete breathers in nonlinear dispersive lattice systems [J].
Dey, B ;
Eleftheriou, M ;
Flach, S ;
Tsironis, GP .
PHYSICAL REVIEW E, 2002, 65 (01)
[6]   Breather compactons in nonlinear Klein-Gordon systems [J].
Dinda, PT ;
Remoissenet, M .
PHYSICAL REVIEW E, 1999, 60 (05) :6218-6221
[7]   From kinks to compactonlike kinks [J].
Dusuel, S ;
Michaux, P ;
Remoissenet, M .
PHYSICAL REVIEW E, 1998, 57 (02) :2320-2326
[8]   A numerical study of compactons [J].
Ismail, MS ;
Taha, TR .
MATHEMATICS AND COMPUTERS IN SIMULATION, 1998, 47 (06) :519-530
[9]   Patterns on liquid surfaces: cnoidal waves, compactons and scaling [J].
Ludu, A ;
Draayer, JP .
PHYSICA D, 1998, 123 (1-4) :82-91
[10]   Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support [J].
Olver, PJ ;
Rosenau, P .
PHYSICAL REVIEW E, 1996, 53 (02) :1900-1906