The number of graphs without forbidden subgraphs

被引:47
作者
Balogh, J [1 ]
Bollobás, B [1 ]
Simonovits, M [1 ]
机构
[1] Hungarian Acad Sci, Inst Math, H-1364 Budapest, Hungary
基金
匈牙利科学研究基金会; 美国国家科学基金会;
关键词
extremal graphs; speed function; Erdos-Kleitman-Rothschild theory;
D O I
10.1016/j.jctb.2003.08.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a family L of graphs, set p = p(L) = min(Lis an element ofL) chi(L) - 1 and, for n greater than or equal to 1, denote by P(n, L) the set of graphs with vertex set [n] containing no member of L as a subgraph, and write ex(n, L) for the maximal size of a member of P(n, L). Extending a result of Erdos, Frankl and Rodl (Graphs Combin. 2 (1986) 113), we prove that \P(n, L)\ less than or equal to 2(1/2(1-1/p)n2+O(n2-r)) for some constant gamma = gamma(L) > 0, and characterize gamma in terms of some related extremal graph problems. In fact, if ex(n, L) = O(n(2-delta)), then any gamma < delta will do. Our proof is based on Szemeredi's Regularity Lemma and the stability theorem of Erdos and Simonovits. The bound above is essentially best possible. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 24
页数:24
相关论文
共 32 条
[1]  
Alekseev V.E., 1992, DISCRETE MATH APPL, V4, P148, DOI 10.1515/dma.1993.3.2.191
[2]   The speed of hereditary properties of graphs [J].
Balogh, J ;
Bollobás, B ;
Weinreich, D .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2000, 79 (02) :131-156
[3]   Measures on monotone properties of graphs [J].
Balogh, J ;
Bollobás, B ;
Weinreich, D .
DISCRETE APPLIED MATHEMATICS, 2002, 116 (1-2) :17-36
[4]   The penultimate rate of growth for graph properties [J].
Balogh, J ;
Bollobás, B ;
Weinreich, D .
EUROPEAN JOURNAL OF COMBINATORICS, 2001, 22 (03) :277-289
[5]   PROJECTIONS OF BODIES AND HEREDITARY PROPERTIES OF HYPERGRAPHS [J].
BOLLOBAS, B ;
THOMASON, A .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1995, 27 :417-424
[6]  
Bollobas B., 1997, ALGORITHMS COMB, V14, P70
[7]  
BOLLOBAS B, 1978, ANN DISCRETE MATH, V3, P29
[8]  
Bollobas B., 1978, EXTREMAL GRAPH THEOR
[9]  
Erdo P., 1968, THEORY GRAPHS P C TI, P77
[10]   THE ASYMPTOTIC NUMBER OF GRAPHS NOT CONTAINING A FIXED SUBGRAPH AND A PROBLEM FOR HYPERGRAPHS HAVING NO EXPONENT [J].
ERDOS, P ;
FRANKL, P ;
RODL, V .
GRAPHS AND COMBINATORICS, 1986, 2 (02) :113-121