Multicomponent Fokas-Lenells equations on Hermitian symmetric spaces

被引:6
作者
Gerdjikov, Vladimir S. [1 ,2 ,3 ]
Ivanov, Rossen I. [4 ]
机构
[1] Natl Res Nucl Univ MEPHI, Dept Appl Math, 31 Kashirskoe Shosse, Moscow 115409, Russia
[2] Bulgarian Acad Sci, Inst Math & Informat, 8 Georgi Bonchev Str, Sofia 1113, Bulgaria
[3] New Bulgarian Univ, Inst Adv Phys Studies, 21 Montevideo Str, Sofia 1618, Bulgaria
[4] Technol Univ Dublin, Sch Math Sci, City Campus,Kevin St, Dublin D08 NF82, Ireland
关键词
bi-Hamiltonian integrable systems; derivative nonlinear Schrö dinger equation; nonlocal integrable equations; simple Lie algebra; A; III symmetric space; BD; I symmetric space; C; I and D; III symmetric spaces;
D O I
10.1088/1361-6544/abcc4b
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Multi-component integrable generalizations of the Fokas-Lenells equation, associated with each irreducible Hermitian symmetric space are formulated. Description of the underlying structures associated to the integrability, such as the Lax representation and the bi-Hamiltonian formulation of the equations is provided. Two reductions are considered as well, one of which leads to a nonlocal integrable model. Examples with Hermitian symmetric spaces of all classical series of types A.III, BD.I, C.I and D.III are presented in details, as well as possibilities for further reductions in a general form.
引用
收藏
页码:939 / 963
页数:25
相关论文
共 53 条
  • [1] COUPLED NONLINEAR SCHRODINGER EQUATIONS FOR INTERFACIAL FLUIDS WITH A FREE SURFACE
    Ablowitz, M. J.
    Haut, T. S.
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 2009, 159 (03) : 689 - 697
  • [2] AFFINE LIE ALGEBRAIC ORIGIN OF CONSTRAINED KP HIERARCHIES
    ARATYN, H
    GOMES, JF
    ZIMERMAN, AH
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (07) : 3419 - 3442
  • [3] G-Strands on symmetric spaces
    Arnaudon, Alexis
    Holm, Darryl D.
    Ivanov, Rossen I.
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2017, 473 (2199):
  • [4] GENERALIZED KDV AND MKDV EQUATIONS ASSOCIATED WITH SYMMETRICAL-SPACES
    ATHORNE, C
    FORDY, A
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (06): : 1377 - 1386
  • [5] Bourbaki N, 1960, ELEMENTS MATH GROUPE ELEMENTS MATH GROUPE
  • [6] AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS
    CAMASSA, R
    HOLM, DD
    [J]. PHYSICAL REVIEW LETTERS, 1993, 71 (11) : 1661 - 1664
  • [7] INTEGRABILITY OF NON-LINEAR HAMILTONIAN-SYSTEMS BY INVERSE SCATTERING METHOD
    CHEN, HH
    LEE, YC
    LIU, CS
    [J]. PHYSICA SCRIPTA, 1979, 20 (3-4): : 490 - 492
  • [8] Faddeev L. D, 1987, HAMILTONIAN METHODS
  • [9] ON A CLASS OF PHYSICALLY IMPORTANT INTEGRABLE EQUATIONS
    FOKAS, AS
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 1995, 87 (1-4) : 145 - 150
  • [10] ON THE STRUCTURE OF SYMPLECTIC OPERATORS AND HEREDITARY SYMMETRIES
    FOKAS, AS
    FUCHSSTEINER, B
    [J]. LETTERE AL NUOVO CIMENTO, 1980, 28 (08): : 299 - 303