Singular solutions, homogeneous norms, and quasiconformal mappings in Carnot groups

被引:30
作者
Balogh, ZM
Holopainen, I
Tyson, JT
机构
[1] Univ Bern, Inst Math, CH-3012 Bern, Switzerland
[2] Univ Helsinki, Dept Math, FIN-00014 Helsinki, Finland
[3] SUNY Stony Brook, Dept Math, Stony Brook, NY 11794 USA
关键词
D O I
10.1007/s00208-002-0334-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In any Carnot (nilpotent stratified Lie) group G of homogeneous dimension Q, Green's function u for the Q-Laplace equation exists and is unique. We prove that there exists a constant gamma = gamma(G) so that N = e(-gammau) is a homogeneous norm in G. Then the extremal lengths of spherical ring domains (measured with respect to N) can be computed and used to give estimates for the extremal lengths of ring domains measured with respect to the Carnot-Caratheodory metric. Applications include regularity properties of quasiconformal mappings and a geometric characterization of bi-Lipschitz mappings.
引用
收藏
页码:159 / 186
页数:28
相关论文
共 33 条
[1]  
BALOGH Z, 2001, FUNDAMENTAL SOLUTION
[2]   Hausdorff dimension distribution of quasiconformal mappings on the heisenberg group [J].
Balogh, ZM .
JOURNAL D ANALYSE MATHEMATIQUE, 2001, 83 (1) :289-312
[3]  
BALOGH ZM, 2001, POLAR COORDINATES CA
[4]   The green function of model step two hypoelliptic operators and the analysis of certain tangential cauchy Riemann complexes [J].
Beals, R ;
Gaveau, B ;
Greiner, P .
ADVANCES IN MATHEMATICS, 1996, 121 (02) :288-345
[5]  
BIESKE T, 1999, INFINITY HARMONIC FU
[6]  
Capogna L, 1997, COMMUN PUR APPL MATH, V50, P867, DOI 10.1002/(SICI)1097-0312(199709)50:9<867::AID-CPA3>3.0.CO
[7]  
2-3
[8]  
Capogna L, 1999, MATH ANN, V313, P263, DOI 10.1007/s002080050261
[9]  
Capogna L, 1996, AM J MATH, V118, P1153
[10]  
Folland G. B., 1982, Hardy spaces on homogeneous groups, V28