Real-Time 'Actor-Critic' Tracking

被引:101
作者
Chen, Boyu [1 ]
Wang, Dong [1 ]
Li, Peixia [1 ]
Wang, Shuang [2 ]
Lu, Huchuan [1 ]
机构
[1] Dalian Univ Technol, Sch Informat & Commun Engn, Dalian, Peoples R China
[2] Alibaba Grp, Hangzhou, Peoples R China
来源
COMPUTER VISION - ECCV 2018, PT VII | 2018年 / 11211卷
关键词
Visual tracking; Real-time tracking; Reinforcement learning; OBJECT TRACKING;
D O I
10.1007/978-3-030-01234-2_20
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work, we propose a novel tracking algorithm with real-time performance based on the 'Actor-Critic' framework. This framework consists of two major components: 'Actor' and 'Critic'. The 'Actor' model aims to infer the optimal choice in a continuous action space, which directly makes the tracker move the bounding box to the object's location in the current frame. For offline training, the 'Critic' model is introduced to form a 'Actor-Critic' framework with reinforcement learning and outputs a Q-value to guide the learning process of both 'Actor' and 'Critic' deep networks. Then, we modify the original deep deterministic policy gradient algorithm to effectively train our 'Actor-Critic' model for the tracking task. For online tracking, the 'Actor' model provides a dynamic search strategy to locate the tracked object efficiently and the 'Critic' model acts as a verification module to make our tracker more robust. To the best of our knowledge, this work is the first attempt to exploit the continuous action and 'Actor-Critic' framework for visual tracking. Extensive experimental results on popular benchmarks demonstrate that the proposed tracker performs favorably against many state-of-the-art methods, with real-time performance.
引用
收藏
页码:328 / 345
页数:18
相关论文
共 55 条
[1]  
[Anonymous], 2016, AAAI
[2]  
[Anonymous], 2017, ICCV
[3]  
[Anonymous], 2016, PROC CVPR IEEE, DOI DOI 10.1109/CVPR.2016.465
[4]  
[Anonymous], 2006, P 2006 IEEE COMP SOC
[5]   Robust Object Tracking with Online Multiple Instance Learning [J].
Babenko, Boris ;
Yang, Ming-Hsuan ;
Belongie, Serge .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (08) :1619-1632
[6]   Lucas-Kanade 20 years on: A unifying framework [J].
Baker, S ;
Matthews, I .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2004, 56 (03) :221-255
[7]  
Bellver M., 2016, NIPS
[8]   Staple: Complementary Learners for Real-Time Tracking [J].
Bertinetto, Luca ;
Valmadre, Jack ;
Golodetz, Stuart ;
Miksik, Ondrej ;
Torr, Philip H. S. .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :1401-1409
[9]   Fully-Convolutional Siamese Networks for Object Tracking [J].
Bertinetto, Luca ;
Valmadre, Jack ;
Henriques, Joao F. ;
Vedaldi, Andrea ;
Torr, Philip H. S. .
COMPUTER VISION - ECCV 2016 WORKSHOPS, PT II, 2016, 9914 :850-865
[10]   Active Object Localization with Deep Reinforcement Learning [J].
Caicedo, Juan C. ;
Lazebnik, Svetlana .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :2488-2496