WEIGHTED HERMITE-HADAMARD TYPE INEQUALITIES FOR DIFFERENTIABLE GA-CONVEX AND GEOMETRICALLY QUASICONVEX MAPPINGS

被引:11
作者
Latif, Muhammad Amer [1 ]
机构
[1] King Faisal Univ, Dept Basic Sci, Al Hufuf, Al Hasa, Saudi Arabia
关键词
Hermite-Hadamard's inequality; GA-convex function; geometrically quasiconvex function; Holder's integral inequality; INTEGRAL-INEQUALITIES;
D O I
10.1216/rmj.2021.51.1899
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove new weighted Hermite-Hadamard type inequalities for differentiable GA-convex and geometrically quasiconvex functions. These results generalize many results proved in earlier works for these classes of functions.
引用
收藏
页码:1899 / 1908
页数:10
相关论文
共 9 条
  • [1] [Anonymous], 2013, ANALYSIS-UK, DOI DOI 10.1524/ANLY.2013.1192
  • [2] Fejer type integral inequalities related with geometrically-arithmetically convex functions with applications
    Dragomir, S. S.
    Latif, M. A.
    Momoniat, E.
    [J]. ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA, 2019, 23 (01): : 51 - 64
  • [3] Dragomir S.S., 2018, Ann. Univ. Mariae Curie-Sklodowska, Sect. A, V72, P55
  • [4] Hadamard J., 1893, J MATH PURE APPL, P171
  • [5] Iscan I., 2014, INT J MATH MATH SCI, V2014
  • [6] Some Fejer Type Integral Inequalities for Geometrically-Arithmetically-Convex Functions with Applications
    Latif, Muhammad Amer
    Dragomir, Sever Silvestru
    Momoniat, Ebrahim
    [J]. FILOMAT, 2018, 32 (06) : 2193 - 2206
  • [7] Convexity according to the geometric mean
    Niculescu, CP
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2000, 3 (02): : 155 - 167
  • [8] Convexity according to means
    Niculescu, CP
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2003, 6 (04): : 571 - 579
  • [9] Some Hermite-Hadamard type inequalities for geometrically quasi-convex functions
    Qi, Feng
    Xi, Bo-Yan
    [J]. PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2014, 124 (03): : 333 - 342