Contra-Lateral Information CNN for Core Lesion Segmentation Based on Native CTP in Acute Stroke

被引:9
作者
Bertels, Jeroen [1 ]
Robben, David [1 ]
Vandermeulen, Dirk [1 ]
Suetens, Paul [1 ]
机构
[1] Katholieke Univ Leuven, Med Image Comp ESAT PSI, Leuven, Belgium
来源
BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2018, PT I | 2019年 / 11383卷
基金
欧盟地平线“2020”;
关键词
Stroke; CTP; Core; CNN;
D O I
10.1007/978-3-030-11723-8_26
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Stroke is an important neuro-vascular disease, for which distinguishing necrotic from salvageable brain tissue is a useful, albeit challenging task. In light of the Ischemic Stroke Lesion Segmentation challenge (ISLES) of 2018 we propose a deep learning-based method to automatically segment necrotic brain tissue at the time of acute imaging based on CT perfusion (CTP) imaging. The proposed convolutional neural network (CNN) makes a voxelwise segmentation of the core lesion. In order to predict the tissue status in one voxel it processes CTP information from the surrounding spatial context from both this voxel and from a corresponding voxel at the contra-lateral side of the brain. The contralateral CTP information is obtained by registering the reflection w.r.t. a sagittal plane through the geometric center. Preprocessed training data was augmented during training and a five-fold cross-validation was used to experiment for the optimal hyperparameters. We used weighted binary cross-entropy and re-calibrated the probabilities upon prediction. The final segmentations were obtained by thresholding the probabilities at 0.50 from the model that performed best w.r.t. the Dice score during training. The proposed method achieves an average validation Dice score of 0.45. Our method slightly underperformed on the ISLES 2018 challenge test dataset with the average Dice score dropping to 0.38.
引用
收藏
页码:263 / 270
页数:8
相关论文
共 7 条
[1]   A Randomized Trial of Intraarterial Treatment for Acute Ischemic Stroke [J].
Berkhemer, O. A. ;
Fransen, P. S. S. ;
Beumer, D. ;
van den Berg, L. A. ;
Lingsma, H. F. ;
Yoo, A. J. ;
Schonewille, W. J. ;
Vos, J. A. ;
Nederkoorn, P. J. ;
Wermer, M. J. H. ;
van Walderveen, M. A. A. ;
Staals, J. ;
Hofmeijer, J. ;
van Oostayen, J. A. ;
Nijeholt, G. J. Lycklama A. ;
Boiten, J. ;
Brouwer, P. A. ;
Emmer, B. J. ;
de Bruijn, S. F. ;
van Dijk, L. C. ;
Kappelle, L. J. ;
Lo, R. H. ;
Van Dijk, E. J. ;
de Vries, J. ;
de Kort, P. L. M. ;
van Rooij, W. J. J. ;
van den Berg, J. S. P. ;
van Hasselt, B. A. A. M. ;
Aerden, L. A. M. ;
Dallinga, R. J. ;
Visser, M. C. ;
Bot, J. C. J. ;
Vroomen, P. C. ;
Eshghi, O. ;
Schreuder, T. H. C. M. L. ;
Heijboer, R. J. J. ;
Keizer, K. ;
Tielbeek, A. V. ;
den Hertog, H. M. ;
Gerrits, D. G. ;
van den Berg-Vos, R. M. ;
Karas, G. B. ;
Steyerberg, E. W. ;
Flach, H. Z. ;
Marquering, H. A. ;
Sprengers, M. E. S. ;
Jenniskens, S. F. M. ;
Beenen, L. F. M. ;
van den Berg, R. ;
Koudstaal, P. J. .
NEW ENGLAND JOURNAL OF MEDICINE, 2015, 372 (01) :11-20
[2]   Deconvolution-Based CT and MR Brain Perfusion Measurement: Theoretical Model Revisited and Practical Implementation Details [J].
Fieselmann, Andreas ;
Kowarschik, Markus ;
Ganguly, Arundhuti ;
Hornegger, Joachim ;
Fahrig, Rebecca .
INTERNATIONAL JOURNAL OF BIOMEDICAL IMAGING, 2011, 2011
[3]   Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials [J].
Goyal, Mayank ;
Menon, Bijoy K. ;
van Zwam, Wim H. ;
Dippel, Diederik W. J. ;
Mitchell, Peter J. ;
Demchuk, Andrew M. ;
Davalos, Antoni ;
Majoie, Charles B. L. M. ;
van der Lugt, Aad ;
de Miquel, Maria A. ;
Donnan, Geoff Rey A. ;
Roos, Yvo B. W. E. M. ;
Bonafe, Alain ;
Jahan, Reza ;
Diener, Hans-Christoph ;
van den Berg, Lucie A. ;
Levy, Elad I. ;
Berkhemer, Olvert A. ;
Pereira, Vitor M. ;
Rempel, Jeremy ;
Millan, Monica ;
Davis, Stephen M. ;
Roy, Daniel ;
Thornton, John ;
San Roman, Luis ;
Ribo, Marc ;
Beumer, Debbie ;
Stouch, Bruce ;
Brown, Scott ;
Campbell, Bruce C. V. ;
van Oostenbrugge, Robert J. ;
Saver, Jeff Rey L. ;
Hill, Michael D. ;
Jovin, Tudor G. .
LANCET, 2016, 387 (10029) :1723-1731
[4]  
Robben D, 2018, TECHNICAL REPORT
[5]  
Robben D, 2018, MICCAI SWITCH
[6]   U-Net: Convolutional Networks for Biomedical Image Segmentation [J].
Ronneberger, Olaf ;
Fischer, Philipp ;
Brox, Thomas .
MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, PT III, 2015, 9351 :234-241
[7]   Imaging of cerebral ischemic edema and neuronal death [J].
von Kummer, Ruediger ;
Dzialowski, Imanuel .
NEURORADIOLOGY, 2017, 59 (06) :545-553