Phase transition in a non-conserving driven diffusive system

被引:21
作者
Evans, MR
Kafri, Y
Levine, E
Mukamel, D
机构
[1] Univ Edinburgh, Dept Phys & Astron, Edinburgh EH9 3JZ, Midlothian, Scotland
[2] Weizmann Inst Sci, Dept Phys Complex Syst, IL-76100 Rehovot, Israel
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2002年 / 35卷 / 29期
关键词
D O I
10.1088/0305-4470/35/29/101
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
An asymmetric exclusion process comprising positive particles, negative particles and vacancies is introduced. The model is defined on a ring and the dynamics does not conserve the number of particles. We solve the steady state exactly and show that it can exhibit a continuous phase transition in which the density of vacancies decreases to zero. The model has no absorbing state and furnishes an example of a one-dimensional phase transition in a homogeneous non-conserving system which does not belong to the absorbing state universality classes.
引用
收藏
页码:L433 / L438
页数:6
相关论文
共 24 条
[1]   Spontaneous breaking of translational invariance and spatial condensation in stationary states on a ring. I. The neutral system [J].
Arndt, PF ;
Heinzel, T ;
Rittenberg, V .
JOURNAL OF STATISTICAL PHYSICS, 1999, 97 (1-2) :1-65
[2]   Spontaneous breaking of translational invariance in one-dimensional stationary states on a ring [J].
Arndt, PF ;
Heinzel, T ;
Rittenberg, V .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (02) :L45-L51
[3]   Stochastic ballistic annihilation and coalescence [J].
Blythe, RA ;
Evans, MR ;
Kafri, Y .
PHYSICAL REVIEW LETTERS, 2000, 85 (18) :3750-3753
[4]   Exact solution of a partially asymmetric exclusion model using a deformed oscillator algebra [J].
Blythe, RA ;
Evans, MR ;
Colaiori, F ;
Essler, FHL .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (12) :2313-2332
[5]   EXACT SOLUTION OF A 1D ASYMMETRIC EXCLUSION MODEL USING A MATRIX FORMULATION [J].
DERRIDA, B ;
EVANS, MR ;
HAKIM, V ;
PASQUIER, V .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (07) :1493-1517
[6]   EXACT SOLUTION OF THE TOTALLY ASYMMETRIC SIMPLE EXCLUSION PROCESS - SHOCK PROFILES [J].
DERRIDA, B ;
JANOWSKY, SA ;
LEBOWITZ, JL ;
SPEER, ER .
JOURNAL OF STATISTICAL PHYSICS, 1993, 73 (5-6) :813-842
[7]   Phase separation in one-dimensional driven diffusive systems [J].
Evans, MR ;
Kafri, Y ;
Koduvely, HM ;
Mukamel, D .
PHYSICAL REVIEW LETTERS, 1998, 80 (03) :425-429
[8]   Phase separation and coarsening in one-dimensional driven diffusive systems: Local dynamics leading to long-range Hamiltonians [J].
Evans, MR ;
Kafri, Y ;
Koduvely, HM ;
Mukamel, D .
PHYSICAL REVIEW E, 1998, 58 (03) :2764-2778
[9]   SPONTANEOUS SYMMETRY-BREAKING IN A ONE-DIMENSIONAL DRIVEN DIFFUSIVE SYSTEM [J].
EVANS, MR ;
FOSTER, DP ;
GODRECHE, C ;
MUKAMEL, D .
PHYSICAL REVIEW LETTERS, 1995, 74 (02) :208-211
[10]  
EVANS MR, IN PRESS PHYSICA A