Fixed point theory of multimaps in abstract convex uniform spaces

被引:12
作者
Park, Sehie [1 ,2 ]
机构
[1] Seoul Natl Univ, Dept Math Sci, Seoul 151747, South Korea
[2] Natl Acad Sci, Seoul 137044, South Korea
关键词
Abstract convex space; KKM space; G-convex space; Multimap (map) classes U-C(K); B; K; KC; KD; Almost fixed point; COINCIDENCE THEOREMS; MULTIFUNCTIONS; VERSIONS; MAPPINGS;
D O I
10.1016/j.na.2009.01.081
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This is to establish fixed point theorems for multimaps in abstract convex uniform spaces. Our new results generalize corresponding ones in topological vector spaces (t.v.s.), convex spaces due to Lassonde, C-spaces due to Horvath, and G-convex spaces due to Park. We show that fixed point theorems on multimaps of the Fan-Browder type, multimaps having ranges of the Zima-Hadzic type, and multimaps whose ranges are phi-sets or Klee approximable sets can be established in abstract convex spaces or KKM spaces. (c) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2468 / 2480
页数:13
相关论文
共 60 条
[1]  
[Anonymous], J KOREAN MATH SOC
[2]  
[Anonymous], 2000, NONLINEAR FUNCT ANAL
[3]   Abstract convexity and fixed points [J].
Ben-El-Mechaiekh, H ;
Chebbi, S ;
Florenzano, M ;
Llinares, JV .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 222 (01) :138-150
[4]   Spaces and maps approximation and fixed points [J].
Ben-El-Mechaiekh, H .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 113 (1-2) :283-308
[5]  
Borglin A., 1976, J. Math. Econ., V3, P313, DOI DOI 10.1016/0304-4068(76)90016-1
[6]   FIXED POINT THEORY OF MULTI-VALUED MAPPINGS IN TOPOLOGICAL VECTOR SPACES [J].
BROWDER, FE .
MATHEMATISCHE ANNALEN, 1968, 177 (04) :283-&
[7]   KKM property and fixed point theorems [J].
Chang, TH ;
Yen, CL .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 203 (01) :224-235
[8]   A GENERALIZATION OF TYCHONOFF FIXED POINT THEOREM [J].
FAN, K .
MATHEMATISCHE ANNALEN, 1961, 142 (03) :305-310
[9]   Almost fixed point and best approximations theorems in H-spaces [J].
Hadzic, O .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1996, 53 (03) :447-454
[10]  
HADZIC O, 1981, NONLINEAR ANAL-THEOR, V5, P1009, DOI 10.1016/0362-546X(81)90060-2