Large deviations in a population dynamics with catastrophes

被引:10
作者
Logachov, A. [1 ,2 ,3 ]
Logachova, O. [3 ,4 ]
Yambartsev, A. [5 ]
机构
[1] RAS, Sobolev Inst Math, Lab Probabil Theory & Math Stat, Siberian Branch, Koptyuga Str 4, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, Pirogova Str 1, Novosibirsk 630090, Russia
[3] Novosibirsk State Univ Econ & Management, Kamenskaya Str 56, Novosibirsk 630099, Russia
[4] Siberian State Univ Geosyst & Technol, Plakhotnogo Str 10, Novosibirsk 630108, Russia
[5] Univ Sao Paulo, Inst Math & Stat, 1010 Rua Matao, BR-05508090 Sao Paulo, SP, Brazil
基金
俄罗斯科学基金会; 巴西圣保罗研究基金会;
关键词
Population models; Catastrophes; Large deviation principle; Local large deviation principle;
D O I
10.1016/j.spl.2019.01.029
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The large deviation principle on phase space is proved for a class of Markov processes known as random population dynamics with catastrophes. In the paper we study the process which corresponds to the random population dynamics with linear growth and uniform catastrophes, where an eliminating portion of the population is chosen uniformly. The large deviation result provides an optimal trajectory of large fluctuation: it shows how the large fluctuations occur for this class of processes. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:29 / 37
页数:9
相关论文
共 50 条