Large deviations in a population dynamics with catastrophes

被引:10
|
作者
Logachov, A. [1 ,2 ,3 ]
Logachova, O. [3 ,4 ]
Yambartsev, A. [5 ]
机构
[1] RAS, Sobolev Inst Math, Lab Probabil Theory & Math Stat, Siberian Branch, Koptyuga Str 4, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, Pirogova Str 1, Novosibirsk 630090, Russia
[3] Novosibirsk State Univ Econ & Management, Kamenskaya Str 56, Novosibirsk 630099, Russia
[4] Siberian State Univ Geosyst & Technol, Plakhotnogo Str 10, Novosibirsk 630108, Russia
[5] Univ Sao Paulo, Inst Math & Stat, 1010 Rua Matao, BR-05508090 Sao Paulo, SP, Brazil
基金
俄罗斯科学基金会; 巴西圣保罗研究基金会;
关键词
Population models; Catastrophes; Large deviation principle; Local large deviation principle;
D O I
10.1016/j.spl.2019.01.029
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The large deviation principle on phase space is proved for a class of Markov processes known as random population dynamics with catastrophes. In the paper we study the process which corresponds to the random population dynamics with linear growth and uniform catastrophes, where an eliminating portion of the population is chosen uniformly. The large deviation result provides an optimal trajectory of large fluctuation: it shows how the large fluctuations occur for this class of processes. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:29 / 37
页数:9
相关论文
共 50 条
  • [1] The local principle of large deviations for compound Poisson process with catastrophes
    Logachov, Artem
    Logachova, Olga
    Yambartsev, Anatoly
    BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2021, 35 (02) : 205 - 223
  • [2] Large deviations, moderate deviations, and the KLS conjecture
    Alonso-Gutierrez, David
    Prochno, Joscha
    Thaele, Christoph
    JOURNAL OF FUNCTIONAL ANALYSIS, 2021, 280 (01)
  • [3] DYNAMICS AND LARGE DEVIATIONS FOR FRACTIONAL STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS WITH LEVY NOISE
    Xu, Jiaohui
    Caraballo, Tomas
    Valero, Jose
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2024, 56 (01) : 1016 - 1067
  • [4] Processes with catastrophes: Large deviation point of view
    Logachov, A.
    Logachova, O.
    Yambartsev, A.
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2024, 176
  • [5] Large deviations of convex polyominoes
    Soloveychik, Ilya
    Tarokh, Vahid
    ELECTRONIC JOURNAL OF PROBABILITY, 2022, 27
  • [6] Large deviations for Bernstein bridges
    Privault, Nicolas
    Yang, Xiangfeng
    Zambrini, Jean-Claude
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2016, 126 (05) : 1285 - 1305
  • [7] Large Deviations for Quantum Spin Systems
    K. Netočný
    F. Redig
    Journal of Statistical Physics, 2004, 117 : 521 - 547
  • [8] Large deviations for a Burgers'-type SPDE
    Cardon-Weber, C
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1999, 84 (01) : 53 - 70
  • [9] Large Deviations in Quantum Spin Chains
    Yoshiko Ogata
    Communications in Mathematical Physics, 2010, 296 : 35 - 68
  • [10] Large deviations for Markov bridges with jumps
    Yang, Xiangfeng
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 416 (01) : 1 - 12