High-strength, thermally stable nylon 6,6 composite nanofiber separators for lithium-ion batteries

被引:46
作者
Yanilmaz, Meltem [1 ]
Zhu, Jiadeng [1 ]
Lu, Yao [1 ]
Ge, Yeqian [1 ]
Zhang, Xiangwu [1 ]
机构
[1] North Carolina State Univ, Dept Text Engn Chem & Sci, Fiber & Polymer Sci Program, Raleigh, NC 27695 USA
关键词
HIGH-PERFORMANCE; MEMBRANES; FLUORIDE-CO-HEXAFLUOROPROPYLENE); CONDUCTIVITY;
D O I
10.1007/s10853-017-0764-8
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Electrospun nylon 6,6 composite nanofiber membranes containing TiO2 or SiO2 nanoparticles were fabricated, and their physical and electrochemical properties were assessed for use as high-strength, thermally stable separators for lithium-ion batteries. Experimental results demonstrated that TiO2/nylon 6,6 and SiO2/nylon 6,6 nanofiber membranes not only displayed good mechanical strength and excellent thermal stability, but also showed improved electrochemical properties compared to commercial polypropylene membrane separator. Larger liquid electrolyte uptake, higher ionic conductivity, higher electrochemical oxidation limit, and lower interfacial resistance with lithium were obtained for TiO2/nylon 6,6 and SiO2/nylon 6,6 nanofiber membranes. Among all membranes studied, SiO2/nylon 6,6 nanofiber membranes showed the highest ionic conductivity and lowest interfacial resistance with lithium owing to their highest porosity and well-dispersed nanoparticles. In addition, Li/LiCoO2 and Li/LiFePO4 cells containing these composite nanofiber membranes demonstrated high cell capacities, good cycling performance, and superior C-rate performance at room temperature.
引用
收藏
页码:5232 / 5241
页数:10
相关论文
共 25 条
[1]   Improved performance of lithium ion battery separator enabled by co-electrospinnig polyimide/poly(vinylidene fluoride-co-hexafluoropropylene) and the incorporation of TiO2-(2-hydroxyethyl methacrylate) [J].
Chen, Weiya ;
Liu, Yanbo ;
Ma, Ying ;
Yang, Wenxiu .
JOURNAL OF POWER SOURCES, 2015, 273 :1127-1135
[2]   The ionic conductivity and mechanical property of electrospun P(VdF-HFP)/PMMA membranes for lithium ion batteries [J].
Ding, Yanhuai ;
Zhang, Ping ;
Long, Zhilin ;
Jiang, Yong ;
Xu, Fu ;
Di, Wei .
JOURNAL OF MEMBRANE SCIENCE, 2009, 329 (1-2) :56-59
[3]   Crystal structures of electrospun PVDF membranes and its separator application for rechargeable lithium metal cells [J].
Gao, Kun ;
Hu, Xinguo ;
Dai, Chongsong ;
Yi, Tingfeng .
MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2006, 131 (1-3) :100-105
[4]   Lithium ion battery separators: Development and performance characterization of a composite membrane [J].
Huang, Xiaosong ;
Hitt, Jonathon .
JOURNAL OF MEMBRANE SCIENCE, 2013, 425 :163-168
[5]   Separator technologies for lithium-ion batteries [J].
Huang, Xiaosong .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2011, 15 (04) :649-662
[6]   A review of recent developments in membrane separators for rechargeable lithium-ion batteries [J].
Lee, Hun ;
Yanilmaz, Meltem ;
Toprakci, Ozan ;
Fu, Kun ;
Zhang, Xiangwu .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (12) :3857-3886
[7]   Coaxial electrospun Si/C-C core-shell composite nanofibers as binder-free anodes for lithium-ion batteries [J].
Li, Ying ;
Xu, Guanjie ;
Yao, Yingfang ;
Xue, Leigang ;
Yanilmaz, Meltem ;
Lee, Hun ;
Zhang, Xiangwu .
SOLID STATE IONICS, 2014, 258 :67-73
[8]   Effect of Al2O3/SiO2 composite ceramic layers on performance of polypropylene separator for lithium-ion batteries [J].
Liu, Hongyu ;
Xu, Jun ;
Guo, Baohua ;
He, Xiangming .
CERAMICS INTERNATIONAL, 2014, 40 (09) :14105-14110
[9]   High performance hybrid Al2O3/poly(vinyl alcohol-co-ethylene) nanofibrous membrane for lithium-ion battery separator [J].
Liu, Qiongzhen ;
Xia, Ming ;
Chen, Jiahui ;
Tao, Yifei ;
Wang, Yuedan ;
Liu, Ke ;
Li, Mufang ;
Wang, Wenwen ;
Wang, Dong .
ELECTROCHIMICA ACTA, 2015, 176 :949-955
[10]   Magnetron sputtering deposition of TiO2 particles on polypropylene separators for lithium-ion batteries [J].
Peng, Kun ;
Wang, Biao ;
Li, Yueming ;
Ji, Chengchang .
RSC ADVANCES, 2015, 5 (99) :81468-81473