Monodromy-free Schrodinger operators with quadratically increasing potentials

被引:40
作者
Oblomkov, AA [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Moscow, Russia
关键词
D O I
10.1007/BF02557204
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider one-dimensional monodromy-free Schrodinger operators with quadratically increasing rational potentials. It is shown that all these operators can be obtained from the operator -partial derivative(2) + x(2) by finitely many rational Darboux transformations. An explicit expression is found for the corresponding potentials in terms of Hermite polynomials.
引用
收藏
页码:1574 / 1584
页数:11
相关论文
共 8 条
[1]  
[Anonymous], COMPTES RENDUS ACAD
[2]   On the singularities of potentials of exactly soluble Schrodinger equations and on Hadamard's problem [J].
Berest, YY ;
Veselov, AP .
RUSSIAN MATHEMATICAL SURVEYS, 1998, 53 (01) :208-209
[3]  
Burchnall JL, 1923, P LOND MATH SOC, V21, P420
[4]   Darboux transformations for multidimensional Schrodinger operators [J].
Chalykh, OA .
RUSSIAN MATHEMATICAL SURVEYS, 1998, 53 (02) :377-379
[5]  
Crum M. M., 1955, QUART J MATH OXFORD, V6, P121, DOI [10.1093/qmath/6.1.121, DOI 10.1093/QMATH/6.1.121]
[6]   DIFFERENTIAL-EQUATIONS IN THE SPECTRAL PARAMETER [J].
DUISTERMAAT, JJ ;
GRUNBAUM, FA .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 103 (02) :177-240
[7]   Monodromy of the matrix Schrodinger equations and Darboux transformations [J].
Goncharenko, VM ;
Veselov, AP .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (23) :5315-5326
[8]  
Ince E.L., 1944, ORDINARY DIFFERENTIA