Generalized fractional integral operators on Orlicz-Hardy spaces

被引:7
作者
Arai, Ryutaro [1 ]
Nakai, Eiichi [1 ]
Sawano, Yoshihiro [2 ,3 ]
机构
[1] Ibaraki Univ, Dept Math, Mito, Ibaraki 3108512, Japan
[2] Chuo Univ, Dept Math, Bunkyo Ku, 1-13-27 Kasuga, Tokyo 1128551, Japan
[3] Peoples Friendship Univ Russia, RUDN Univ, Dept Math Anal & Theory Funct, 6 Miklukho Maklay St, Moscow 117198, Russia
基金
日本学术振兴会;
关键词
fractional integral operator; Hardy space; Orlicz–
D O I
10.1002/mana.201900052
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The generalized fractional integral operators are shown to be bounded from an Orlicz-Hardy space H phi(Rn) to another Orlicz-Hardy space H psi(Rn), where phi and psi are generalized Young functions. The result extends the boundedness of the usual fractional integral operator I alpha from Hp(Rn) to Hq(Rn) for alpha,p,q is an element of(0,infinity) and -n/p+alpha=-n/q, which was proved by Stein and Weiss in 1960.
引用
收藏
页码:224 / 235
页数:12
相关论文
共 23 条
[11]  
Nakai E, 2001, TAIWAN J MATH, V5, P587
[12]   Orlicz-Hardy spaces and their duals [J].
Nakai, Eiichi ;
Sawano, Yoshihiro .
SCIENCE CHINA-MATHEMATICS, 2014, 57 (05) :903-962
[13]   Hardy spaces with variable exponents and generalized Campanato spaces [J].
Nakai, Eiichi ;
Sawano, Yoshihiro .
JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 262 (09) :3665-3748
[14]   FRACTIONAL INTEGRATION IN ORLICZ SPACES .1. [J].
ONEIL, R .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 115 (03) :300-&
[15]   SHARP L(P)-WEIGHTED SOBOLEV INEQUALITIES [J].
PEREZ, C .
ANNALES DE L INSTITUT FOURIER, 1995, 45 (03) :809-&
[16]  
Pustylnik E., 1999, ISRAEL MATH C P, V13, P161
[17]  
Sawano Y, 2018, DEV MATH, V56, DOI 10.1007/978-981-13-0836-9
[18]   Generalized Fractional Integral Operators and Their Commutators with Functions in Generalized Campanato Spaces on Orlicz Spaces [J].
Shi, Minglei ;
Arai, Ryutaro ;
Nakai, Eiichi .
TAIWANESE JOURNAL OF MATHEMATICS, 2019, 23 (06) :1339-1364
[19]  
Siddhamshetty P, 2017, P AMER CONTR CONF, P2182, DOI 10.23919/ACC.2017.7963276
[20]  
Stein E.M, 1970, PRINCETON MATH SERIE, V30