The β-Model-Maximum Likelihood, Cramer-Rao Bounds, and Hypothesis Testing

被引:5
|
作者
Wahlstrom, Johan [1 ]
Skog, Isaac [1 ]
La Rosa, Patricio S. [2 ,3 ]
Handel, Peter [1 ]
Nehorai, Arye [4 ]
机构
[1] KTH Royal Inst Technol, ACCESS Linnaeus Ctr, Dept Signal Proc, S-11428 Stockholm, Sweden
[2] Monsanto Co, Global IT Analyt, St Louis, MO 63167 USA
[3] Washington Univ St Louis, Sch Engn, St Louis, MO 63130 USA
[4] Washington Univ St Louis, Dept Elect & Syst Engn, St Louis, MO 63130 USA
关键词
The beta-model; Cramer-Rao bounds; hypothesis testing; random graphs; dynamic social networks; RANDOM GRAPHS; ASYMPTOTICS; NUMBER;
D O I
10.1109/TSP.2017.2691667
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We study the maximum-likelihood estimator in a setting where the dependent variable is a random graph and covariates are available on a graph level. The model generalizes the well-known beta-model for random graphs by replacing the constant model parameters with regression functions. Cramer-Rao bounds are derived for special cases of the undirected beta-model, the directed beta-model, and the covariate-based beta-model. The corresponding maximum-likelihood estimators are compared with the bounds by means of simulations. Moreover, examples are given on how to use the presented maximum-likelihood estimators to test for directionality and significance. Finally, the applicability of the model is demonstrated using temporal social network data describing communication among healthcare workers.
引用
收藏
页码:3234 / 3246
页数:13
相关论文
共 44 条
  • [21] Cramer-Rao Bounds for Broadband Dispersion Extraction of Borehole Acoustic Modes
    Wang, Pu
    Bose, Sandip
    IEEE SIGNAL PROCESSING LETTERS, 2014, 21 (09) : 1083 - 1087
  • [22] Error images for spectroscopic imaging by LCModel using Cramer-Rao bounds
    Jiru, F
    Skoch, A
    Klose, U
    Grodd, W
    Hajek, M
    MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE, 2006, 19 (01) : 1 - 14
  • [23] Cramer-Rao Bounds for SNR Estimation of Oversampled Linearly Modulated Signals
    Lopez-Valcarce, Roberto
    Villares, Javier
    Riba, Jaume
    Gappmair, Wilfried
    Mosquera, Carlos
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (07) : 1675 - 1683
  • [24] On the direction estimation Cramer-Rao bounds in the presence of uncorrelated unknown noise
    Matveyev, AL
    Gershman, AB
    Böhme, JF
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 1999, 18 (05) : 479 - 487
  • [25] Asymptotic Cramer-Rao bounds for two closely spaced damped cisoids
    Yilmaz, Ersen
    Dilaveroglu, Erdogan
    SIGNAL PROCESSING, 2006, 86 (11) : 3388 - 3392
  • [26] Sparse Sampling in Fractional Fourier Domain: Recovery Guarantees and Cramer-Rao Bounds
    Pavlicek, Vaclav
    Bhandari, Ayush
    IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 1665 - 1669
  • [27] The Effect of Sensor Modality on Posterior Cramer-Rao Bounds for Simultaneous Localisation and Mapping
    Selvaratnam, Daniel D.
    Shames, Iman
    Ristic, Branko
    Manton, Jonathan H.
    IFAC PAPERSONLINE, 2016, 49 (15): : 242 - 247
  • [28] Cramer-Rao Bounds for Target Parameters in Space-Based Radar Applications
    Pillai, Unnikrishna S.
    Li, Ke Yong
    Himed, Braham
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2008, 44 (04) : 1356 - 1370
  • [29] Reply to 'Comments on "Linearization method for finding Cramer-Rao bounds in signal processing"'
    Gu, HJ
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2001, 49 (12) : 3169 - 3169
  • [30] Cramer-Rao Bounds for Near-Field Sensing: A Generic Modular Architecture
    Meng, Chunwei
    Ma, Dingyou
    Chen, Xu
    Feng, Zhiyong
    Liu, Yuanwei
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2024, 13 (08) : 2205 - 2209