Natural history of genetically proven autosomal recessive Alport syndrome

被引:61
作者
Oka, Masafumi [1 ]
Nozu, Kandai [1 ]
Kaito, Hiroshi [1 ]
Fu, Xue Jun [1 ]
Nakanishi, Koichi [2 ]
Hashimura, Yuya [1 ]
Morisada, Naoya [1 ]
Yan, Kunimasa [3 ]
Matsuo, Masafumi [1 ]
Yoshikawa, Norishige [2 ]
Vorechovsky, Igor [4 ]
Iijima, Kazumoto [1 ]
机构
[1] Kobe Univ, Grad Sch Med, Dept Pediat, Chuo Ku, Kobe, Hyogo 6500017, Japan
[2] Wakayama Med Coll, Dept Pediat, Wakayama 640, Japan
[3] Kyorin Univ, Sch Med, Dept Pediat, Mitaka, Tokyo 181, Japan
[4] Univ Southampton, Fac Med, Southampton SO9 5NH, Hants, England
关键词
Autosomal recessive Alport syndrome; COL4A3; COL4A4; Type IV collagen alpha5; GENOTYPE-PHENOTYPE CORRELATIONS; BASEMENT-MEMBRANE NEPHROPATHY; GLOMERULAR-FILTRATION RATE; BENIGN FAMILIAL HEMATURIA; COL4A3/COL4A4; MUTATIONS; IV COLLAGEN; MOLECULAR ANALYSIS; GITELMANS-SYNDROME; RENAL-FAILURE; COL4A5; GENE;
D O I
10.1007/s00467-014-2797-4
中图分类号
R72 [儿科学];
学科分类号
100202 ;
摘要
Autosomal recessive Alport syndrome (ARAS) is a rare hereditary disease caused by homozygous or compound heterozygous mutations in either the COL4A3 or COL4A4 genes. Failure to diagnose ARAS cases is common, even if detailed clinical and pathological examinations are carried out. As the mutation detection rate for ARAS is unsatisfactory, we sought to develop more reliable diagnostic methods and provide a better description of the clinicopathological characteristics of this disorder. A retrospective analysis of 30 genetically diagnosed patients with ARAS in 24 pedigrees was conducted. The mutation detection strategy comprised three steps: (1) genomic DNA analysis using polymerase chain reaction (PCR) and direct sequencing; (2) mRNA analysis using reverse transcription (RT)-PCR to detect RNA processing abnormalities; (3) semi-quantitative PCR using capillary electrophoresis to detect large heterozygous deletions. Using the three-step analysis, we identified homozygous or compound heterozygous mutations in all patients. Interestingly, 20 % of our ARAS patients showed normal expression of alpha 5 in kidney tissue. The median age of developing end-stage renal disease was 21 years. The strategy described in this study improves the diagnosis for ARAS families. Although immunohistochemical analysis of alpha 5 can provide diagnostic information, normal distribution does not exclude the diagnosis of ARAS.
引用
收藏
页码:1535 / 1544
页数:10
相关论文
共 50 条
  • [21] Autosomal recessive Alport syndrome caused by a novel COL4A4 compound heterozygous mutation: A case report
    Liao, Yong
    Cheng, Jing
    Zhao, Yu
    CLINICAL NEPHROLOGY, 2021, 96 (05) : 302 - 305
  • [22] Autosomal dominant Alport syndrome: molecular analysis of the COL4A4 gene and clinical outcome
    Marcocci, Elena
    Uliana, Vera
    Bruttini, Mirella
    Artuso, Rosangela
    Silengo, Margherita Cirillo
    Zerial, Marlenka
    Bergesio, Franco
    Amoroso, Antonio
    Savoldi, Silvana
    Pennesi, Marco
    Giachino, Daniela
    Rombola, Giuseppe
    Fogazzi, Giovanni Battista
    Rosatelli, Cristina
    Martinhago, Ciro Dresch
    Carmellini, Mario
    Mancini, Roberta
    Di Costanzo, Giuseppina
    Longo, Ilaria
    Renieri, Alessandra
    Mari, Francesca
    NEPHROLOGY DIALYSIS TRANSPLANTATION, 2009, 24 (05) : 1464 - 1471
  • [23] Increased microvascular disease in X-linked and autosomal recessive Alport syndrome: a case control cross sectional observational study
    Smith, James D.
    Colville, Deb
    Lyttle, Nicolette
    Lamoureux, Ecosse
    Savige, Judy
    OPHTHALMIC GENETICS, 2019, 40 (02) : 129 - 134
  • [24] Autosomal Recessive Stickler Syndrome
    Nixon, Thomas R. W.
    Richards, Allan J.
    Martin, Howard
    Alexander, Philip
    Snead, Martin P.
    GENES, 2022, 13 (07)
  • [25] Heterozygous Urinary Abnormality-Causing Variants of COL4A3 and COL4A4 Affect Severity of Autosomal Recessive Alport Syndrome
    Horinouchi, Tomoko
    Yamamura, Tomohiko
    Nagano, China
    Sakakibara, Nana
    Ishiko, Shinya
    Aoto, Yuya
    Rossanti, Rini
    Nakanishi, Koichi
    Shima, Yuko
    Morisada, Naoya
    Iijima, Kazumoto
    Nozu, Kandai
    KIDNEY360, 2020, 1 (09): : 936 - 942
  • [26] Successful renal transplantation in a family with a novel mutation in COL4A3 gene and autosomal recessive Alport syndrome
    Girimaji, Niveditha
    Murugan, Sakthivel S. M.
    Nada, Ritambhra
    Sharma, Ashish
    Rathi, Manish
    Kohli, Harbir S.
    Gupta, Krishna L.
    Ramachandran, Raja
    NEPHROLOGY, 2020, 25 (06) : 497 - 501
  • [27] Study of the True Clinical Progression of Autosomal Dominant Alport Syndrome in a European Population
    Rosado, Consolacion
    Bueno, Elena
    Felipe, Carmen
    Valverde, Sebastian
    Gonzalez-Sarmiento, Rogelio
    KIDNEY & BLOOD PRESSURE RESEARCH, 2015, 40 (04) : 435 - 442
  • [28] Autosomal recessive cutis laxa syndrome revisited
    Morava, Eva
    Guillard, Mailys
    Lefeber, Dirk J.
    Wevers, Ron A.
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2009, 17 (09) : 1099 - 1110
  • [29] Clinical Features and Familial Mutations in an Autosomal-Inherited Alport Syndrome Patient With the Presentation of Nephrotic Syndrome
    Wang, Dahai
    Shan, Chunrong
    Jing, Xinxin
    Zhang, Qiuye
    Chang, Hong
    Lin, Yi
    FRONTIERS IN PEDIATRICS, 2021, 9
  • [30] Unbiased next generation sequencing analysis confirms the existence of autosomal dominant Alport syndrome in a relevant fraction of cases
    Fallerini, C.
    Dosa, L.
    Tita, R.
    Del Prete, D.
    Feriozzi, S.
    Gai, G.
    Clementi, M.
    La Manna, A.
    Miglietti, N.
    Mancini, R.
    Mandrile, G.
    Ghiggeri, G. M.
    Piaggio, G.
    Brancati, F.
    Diano, L.
    Frate, E.
    Pinciaroli, A. R.
    Giani, M.
    Castorina, P.
    Bresin, E.
    Giachino, D.
    De Marchi, M.
    Mari, F.
    Bruttini, M.
    Renieri, A.
    Ariani, F.
    CLINICAL GENETICS, 2014, 86 (03) : 252 - 257