Non-commutative determinants and quaternionic Monge-Ampere equations

被引:0
作者
Alesker, S [1 ]
机构
[1] Tel Aviv Univ, Dept Math, IL-69978 Tel Aviv, Israel
来源
ADVANCES IN ANALYSIS AND GEOMETRY: NEW DEVELOPMENTS USING CLIFFORD ALGEBRAS | 2004年
关键词
Moore determinant; Monge-Ampere equation; plurisubharmonic function;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
First we give a survey of the notions and the properties of noncommutative determinants of Moore and Dieudonne, especially in the quaternionic case, with a particular emphasis to applications in quaternionic analysis. Then we review the theory of plurisubharmonic functions and Monge-Ampere equations in quaternionic variables, following [4] and [5].
引用
收藏
页码:289 / 300
页数:12
相关论文
共 38 条
  • [1] Adams WW., 1999, J GEOM ANAL, V9, P1, DOI [DOI 10.1007/BF02923085.MR1760717, 10.1007/BF02923085, DOI 10.1007/BF02923085]
  • [2] Aleksandrov A. D., 1958, VESTNIK LENINGRAD U, V13, P5
  • [3] Non-commutative linear algebra and plurisubharmonic functions of quaternionic variables
    Alesker, S
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2003, 127 (01): : 1 - 35
  • [4] Alesker S., 2003, J GEOM ANAL, V13, P183
  • [5] Alexandrov A.D., 1938, MAT SBORNIK, V3, P227
  • [6] [Anonymous], 1931, B MATH SCI
  • [7] ARTIN E, 1957, GEOMETRICS ALGEBRA
  • [8] AUBIN T, 1976, CR ACAD SCI A MATH, V283, P119
  • [9] AUBIN T, 1982, GUNDLEHREN MATHEMATI, V252
  • [10] AUBIN T, 1982, CR HEBD ACAD SCI, P252