The numerical calculation of quantum field theory in hadron spectroscopy

被引:1
作者
Sun, M. Z. [1 ]
Cao, Y. [1 ]
Hu, B. T. [1 ]
Zhang, Y. [1 ]
Chen, X. R. [2 ]
机构
[1] Lanzhou Univ, Sch Nucl Sci & Technol, Lanzhou 730000, Peoples R China
[2] Chinese Acad Sci, Inst Modern Phys, Lanzhou 730000, Peoples R China
基金
中国国家自然科学基金;
关键词
Quantum field theory; QFT plus plus package; numerical calculations; hadron spectroscopy;
D O I
10.1142/S0218301314600052
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
In this paper, we introduced QFT++, a C++ toolkit for numerical calculation of quantum field theory. By comparing the result from QFT++ with the traditional calculation result of the Feynman amplitude p (p) over bar -> m Phi, the validity of QFT++ was demonstrated. Furthermore, the toolkit was optimized in a fixed convention, in which a significant improvement of performance was found. The optimized version will be used in the partial wave analysis (PWA) of hadron spectroscopy, where the computation speed is a crucial bottleneck in most cases.
引用
收藏
页数:8
相关论文
共 50 条
[41]   Holographic description of quantum field theory [J].
Lee, Sung-Sik .
NUCLEAR PHYSICS B, 2010, 832 (03) :567-585
[42]   Quantum field theory and dense measurement [J].
Bar, D .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2003, 42 (03) :443-463
[43]   KAM Theorem and Quantum Field Theory [J].
Jean Bricmont ;
Krzysztof Gawędzki ;
Antti Kupiainen .
Communications in Mathematical Physics, 1999, 201 :699-727
[44]   Spin operators in the quantum field theory [J].
Zhang, PF ;
Ruan, TN .
HIGH ENERGY PHYSICS AND NUCLEAR PHYSICS-CHINESE EDITION, 2000, 24 (08) :775-779
[45]   On Bound States in Quantum Field Theory [J].
Changyong Liu .
International Journal of Theoretical Physics, 2021, 60 :1008-1024
[46]   New formalism of quantum field theory [J].
Feng B. .
Kexue Tongbao/Chinese Science Bulletin, 2018, 63 (24) :2530-2535
[47]   Quantum Field Theory and Dense Measurement [J].
Daniel Bar .
International Journal of Theoretical Physics, 2003, 42 :443-463
[48]   Integrable structures in quantum field theory [J].
Negro, Stefano .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (32)
[49]   Group contraction in quantum field theory [J].
Vitiello, Giuseppe .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2008, 47 (02) :393-414
[50]   Neural networks and quantum field theory [J].
Halverson, James ;
Maiti, Anindita ;
Stoner, Keegan .
MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2021, 2 (03)