Nonsmooth integral directing functions in the problems of forced oscillations

被引:5
|
作者
Kornev, S. V. [1 ]
机构
[1] Voronezh State Pedag Univ, Voronezh, Russia
基金
俄罗斯基础研究基金会;
关键词
PERIODIC-SOLUTIONS; GUIDING FUNCTIONS; SYSTEMS;
D O I
10.1134/S0005117915090027
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The method of directing function was extended to the nonsmooth case. It is used to solve the problem of periodic oscillations of the control plants obeying the functional-differential inclusions whose right side is not convex-valued and satisfies the condition for almost semicontinuity from below.
引用
收藏
页码:1541 / 1550
页数:10
相关论文
共 50 条
  • [1] A Continuation Result for Forced Oscillations of Constrained Motion Problems with Infinite Delay
    Benevieri, Pierluigi
    Furi, Massimo
    Pera, Maria Patrizia
    Calamai, Alessandro
    ADVANCED NONLINEAR STUDIES, 2013, 13 (02) : 263 - 278
  • [2] RANDOM NONSMOOTH INTEGRAL GUIDING FUNCTIONS AND ASYMPTOTIC BEHAVIOR OF TRAJECTORIES FOR RANDOM DIFFERENTIAL INCLUSIONS
    Kornev, Sergey
    Nguyen Van Loi
    Obukhovskii, Valeri
    Wen, Ching-Feng
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2018, 19 (03) : 493 - 500
  • [3] Method of Nonsmooth Integral Guiding Functions in Periodic Solutions Problem for Inclusions with Causal Multioperators
    Kornev, S. V.
    BULLETIN OF THE SOUTH URAL STATE UNIVERSITY SERIES-MATHEMATICAL MODELLING PROGRAMMING & COMPUTER SOFTWARE, 2016, 9 (02): : 46 - 59
  • [4] Branch-locking AD techniques for nonsmooth composite functions and nonsmooth implicit functions
    Khan, Kamil A.
    OPTIMIZATION METHODS & SOFTWARE, 2018, 33 (4-6) : 1127 - 1155
  • [5] Periodic oscillations of the forced Brusselator
    Gallas, J. A. C.
    MODERN PHYSICS LETTERS B, 2015, 29 (35-36):
  • [6] Forced synchronization of quasiperiodic oscillations
    Stankevich, N. V.
    Kurths, J.
    Kuznetsov, A. P.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 20 (01) : 316 - 323
  • [7] Asymptotic stability of forced oscillations emanating from a limit cycle
    Makarenkov, Oleg
    Ortega, Rafael
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 250 (01) : 39 - 52
  • [8] Forced symmetric oscillations of evolution equations
    Aizicovici, S
    Feckan, M
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 64 (07) : 1621 - 1640
  • [9] Nonlinear forced oscillations of piezoelectric resonators
    Li, H
    Preidikman, S
    Balachandran, B
    SMART STRUCTURES AND MATERIALS 2005: MODELING, SIGNAL PROCESSING, AND CONTROL, 2005, 5757 : 30 - 41
  • [10] FORCED OSCILLATIONS FOR DELAY MOTION EQUATIONS ON MANIFOLDS
    Benevieri, Pierluigi
    Calamai, Alessandro
    Furi, Massimo
    Pera, Maria Patrizia
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2007,