The polyharmonic Dirichlet problem and path counting

被引:2
作者
Hangelbroek, Thomas [1 ]
Lauve, Aaron [2 ]
机构
[1] Univ Hawaii, Dept Math, Honolulu, HI 96822 USA
[2] Loyola Univ, Dept Math, Chicago, IL 60660 USA
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2014年 / 102卷 / 03期
基金
美国国家科学基金会;
关键词
Dyck paths; Surface splines; Total positivity; Boundary layer potentials; MULTIVARIATE INTERPOLATION; GREEN-FUNCTION; HALF-SPACE; BOUNDARY; ERROR;
D O I
10.1016/j.matpur.2013.12.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article provides a solution to the m-fold Laplace equation in the half-space R-+(d) under certain Dirichlet conditions. The solution we present is a series of m boundary layer potentials. We give explicit formulas for these layer potentials as linear combinations of powers of the Laplacian applied to the Dirichlet data, with coefficients determined by certain path counting problems. (C) 2013 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:449 / 481
页数:33
相关论文
共 46 条