An Extension of the Cayley-Hamilton Theorem to Different Orders Fractional Linear Systems and Its Application to Electrical Circuits

被引:21
作者
Kaczorek, Tadeusz [1 ]
机构
[1] Bialystok Tech Univ, Fac Elect Engn, PL-15351 Bialystok, Poland
关键词
Cayley-Hamilton theorem; extension; fractional; different order; linear; system; electrical circuits; GENERALIZED CAYLEY;
D O I
10.1109/TCSII.2018.2873176
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The classical Cayley-Hamilton theorem is extended to different orders fractional continuous-time linear systems and to fractional electrical circuits.
引用
收藏
页码:1169 / 1171
页数:3
相关论文
共 22 条
[11]  
Kaczorek T., 1995, P INT C FUND EL CIRC, P77
[12]  
Kaczorek T., 1995, B POLISH ACAD SCI TE, V43, P49
[13]  
Kaczorek T, 2017, 2017 22ND INTERNATIONAL CONFERENCE ON METHODS AND MODELS IN AUTOMATION AND ROBOTICS (MMAR), P70, DOI 10.1109/MMAR.2017.8046800
[14]  
Kaczorek T, 2016, 2016 21ST INTERNATIONAL CONFERENCE ON METHODS AND MODELS IN AUTOMATION AND ROBOTICS (MMAR), P838, DOI 10.1109/MMAR.2016.7575246
[15]   Positive Linear Systems Consisting of n Subsystems With Different Fractional Orders [J].
Kaczorek, Tadeusz .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2011, 58 (06) :1203-1210
[16]  
Kaczorek T, 2005, INT J AP MAT COM-POL, V15, P231
[17]  
Lewis F. L., 1983, Proceedings of the 22nd IEEE Conference on Decision and Control, P1282
[18]   FURTHER REMARKS ON THE CAYLEY HAMILTON THEOREM AND LEVERRIER METHOD FOR THE MATRIX PENCIL (SE-A) [J].
LEWIS, FL .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1986, 31 (09) :869-870
[19]   ON THE GENERALIZED CAYLEY - HAMILTON THEOREM [J].
MERTZIOS, BG ;
CHRISTODOULOU, MA .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1986, 31 (02) :156-157
[20]   THE ALGEBRA OF MATRICES IN N-DIMENSIONAL SYSTEMS [J].
SMART, NM ;
BARNETT, S .
IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 1989, 6 (02) :121-133