Minimum energy on trees with k pendent vertices

被引:36
作者
Yu, Aimei [1 ]
Lv, Xuezheng
机构
[1] Jiao Tong Univ, Dept Math, Beijing 100044, Peoples R China
[2] Renmin Univ China, Dept Math, Beijing 100872, Peoples R China
关键词
energy; tree; pendent vertex; PI-ELECTRON ENERGY; MAXIMAL ENERGY; HEXAGONAL CHAINS; UNICYCLIC GRAPHS; BOUNDS; SYSTEMS;
D O I
10.1016/j.laa.2006.03.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The energy of G, denoted by E(G), is defined as the sum of the absolute values of the eigenvalues of G. In this paper, we characterize the tree with minimal energy among the trees with k pendent vertices. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:625 / 633
页数:9
相关论文
共 34 条
[11]   MCCLELLAND-TYPE LOWER BOUND FOR TOTAL PI-ELECTRON ENERGY [J].
GUTMAN, I .
JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS, 1990, 86 (20) :3373-3375
[12]   ACYCLIC SYSTEMS WITH EXTREMAL HUCKEL PI-ELECTRON ENERGY [J].
GUTMAN, I .
THEORETICA CHIMICA ACTA, 1977, 45 (02) :79-87
[13]  
Gutman I, 2001, ALGEBRAIC COMBINATORICS AND APPLICATIONS, P196
[14]  
Gutman I., 1986, MATH CONCEPTS ORGANI, DOI [10.1515/9783112570180, DOI 10.1515/9783112570180]
[15]  
Gutman I., 1986, MATCH-COMMUN MATH CO, V19, P147
[16]  
[侯耀平 Hou Yaoping], 2003, [系统科学与数学, Journal of Systems Science and Mathematical Sciences], V23, P491
[17]   Unicyclic graphs with minimal energy [J].
Hou, YP .
JOURNAL OF MATHEMATICAL CHEMISTRY, 2001, 29 (03) :163-168
[18]  
Indulal G, 2006, MATCH-COMMUN MATH CO, V55, P83
[19]   Improving the McClelland inequality for total π-electron energy [J].
Koolen, JH ;
Moulton, V ;
Gutman, I .
CHEMICAL PHYSICS LETTERS, 2000, 320 (3-4) :213-216
[20]   Maximal energy bipartite graphs [J].
Koolen, JH ;
Moulton, V .
GRAPHS AND COMBINATORICS, 2003, 19 (01) :131-135