Minimum energy on trees with k pendent vertices

被引:36
作者
Yu, Aimei [1 ]
Lv, Xuezheng
机构
[1] Jiao Tong Univ, Dept Math, Beijing 100044, Peoples R China
[2] Renmin Univ China, Dept Math, Beijing 100872, Peoples R China
关键词
energy; tree; pendent vertex; PI-ELECTRON ENERGY; MAXIMAL ENERGY; HEXAGONAL CHAINS; UNICYCLIC GRAPHS; BOUNDS; SYSTEMS;
D O I
10.1016/j.laa.2006.03.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The energy of G, denoted by E(G), is defined as the sum of the absolute values of the eigenvalues of G. In this paper, we characterize the tree with minimal energy among the trees with k pendent vertices. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:625 / 633
页数:9
相关论文
共 34 条
[1]  
[Anonymous], DISCRETE MATH CHEM
[2]  
BABIC D, 1995, COMMUN MATH CHEM MAT, V32, P7
[3]  
Bondy JA, 2008, GRAPH THEORY APPL
[4]  
Chen AL, 2006, MATCH-COMMUN MATH CO, V55, P95
[5]  
Cvetkovic Dragos M., 1980, Pure and applied mathematics: a series of monographs and textbooks
[6]   Laplacian energy of a graph [J].
Gutman, I ;
Zhou, B .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 414 (01) :29-37
[7]  
GUTMAN I, 1992, TOP CURR CHEM, V162, P29
[8]  
GUTMAN I, 1984, THEOR CHIM ACTA, V65, P23, DOI 10.1007/BF00552296
[9]   BOUNDS FOR TOTAL PI-ELECTRON ENERGY [J].
GUTMAN, I .
CHEMICAL PHYSICS LETTERS, 1974, 24 (02) :283-285
[10]   BOUNDS FOR TOTAL PI-ELECTRON ENERGY OF POLYMETHINES [J].
GUTMAN, I .
CHEMICAL PHYSICS LETTERS, 1977, 50 (03) :488-490