Battery state-of-health estimation based on a metabolic extreme learning machine combining degradation state model and error compensation

被引:87
作者
Chen, Lin [1 ,2 ]
Wang, Huimin [1 ]
Liu, Bohao [1 ]
Wang, Yijue [3 ]
Ding, Yunhui [1 ]
Pan, Haihong [1 ]
机构
[1] Guangxi Univ, Coll Mech Engn, Dept Mechatron Engn, Nanning 530000, Peoples R China
[2] Guangxi Univ, Collaborat Innovat Ctr Renewable Energy Mat CICRE, Guangxi Key Lab Electrochem Energy Mat, Nanning 530000, Peoples R China
[3] Univ Connecticut, Dept Comp Sci & Engn, Storrs, CT 06269 USA
基金
中国国家自然科学基金;
关键词
D O I
10.1016/j.energy.2020.119078
中图分类号
O414.1 [热力学];
学科分类号
摘要
Accurate estimation of battery state-of-health (SOH) is of great importance for ensuring the safety and reliability of battery energy storage system. Due to the complicated degradation mechanism of batteries, the transfer application of SOH estimation for different types of the batteries with unknown usage levels is challenging. To solve this issue, a novel metabolic extreme learning machine (MELM) framework for SOH estimation is proposed in this study. A degradation state model based on the extreme learning machine (ELM) is developed to describe the complex battery degradation mechanism, and the established model can map the relationship between the degradation features and the degradation dynamics for different batteries. To realize SOH estimation at different usage levels with a few data, the metabolic mechanism is introduced to update the input of the degradation state model and reflect the latest trend of degradation. To reduce the errors caused by the metabolism, the grey model is adopted to extrapolate the trend of error accumulation and correct the estimation results. The prominent performances of the MELM framework are synthetically verified from different aspects, the results indicate the MELM framework can effectively realize the SOH estimation for different types of batteries with unknown usage levels. (c) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:10
相关论文
共 30 条
[1]   Advanced mathematical methods of SOC and SOH estimation for lithium-ion batteries [J].
Andre, Dave ;
Appel, Christian ;
Soczka-Guth, Thomas ;
Sauer, Dirk Uwe .
JOURNAL OF POWER SOURCES, 2013, 224 :20-27
[2]   State-of-health estimation of lithium-ion battery packs in electric vehicles based on genetic resampling particle filter [J].
Bi, Jun ;
Zhang, Ting ;
Yu, Haiyang ;
Kang, Yanqiong .
APPLIED ENERGY, 2016, 182 :558-568
[3]   An evolutionary framework for lithium-ion battery state of health estimation [J].
Cai, Lei ;
Meng, Jinhao ;
Stroe, Daniel-Ioan ;
Luo, Guangzhao ;
Teodorescu, Remus .
JOURNAL OF POWER SOURCES, 2019, 412 :615-622
[4]   State of Charge and State of Health Estimation for Lithium Batteries Using Recurrent Neural Networks [J].
Chaoui, Hicham ;
Ibe-Ekeocha, Chinemerem Christopher .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2017, 66 (10) :8773-8783
[5]   A new state-of-health estimation method for lithium-ion batteries through the intrinsic relationship between ohmic internal resistance and capacity [J].
Chen, Lin ;
Lu, Zhiqiang ;
Lin, Weilong ;
Li, Junzi ;
Pan, Haihong .
MEASUREMENT, 2018, 116 :586-595
[6]   Robust Adaptive Sliding-Mode Observer Using RBF Neural Network for Lithium-Ion Battery State of Charge Estimation in Electric Vehicles [J].
Chen, Xiaopeng ;
Shen, Weixiang ;
Dai, Mingxiang ;
Cao, Zhenwei ;
Jin, Jiong ;
Kapoor, Ajay .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2016, 65 (04) :1936-1947
[7]   Feature parameter extraction and intelligent estimation of the State-of-Health of lithium-ion batteries [J].
Deng, Yuanwang ;
Ying, Hejie ;
Jiaqiang, E. ;
Zhu, Hao ;
Wei, Kexiang ;
Chen, Jingwei ;
Zhang, Feng ;
Liao, Gaoliang .
ENERGY, 2019, 176 :91-102
[8]   Lithium-Ion Batteries Health Prognosis Considering Aging Conditions [J].
El Mejdoubi, Asmae ;
Chaoui, Hicham ;
Gualous, Hamid ;
Van den Bossche, Peter ;
Omar, Noshin ;
Van Mierlo, Joeri .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2019, 34 (07) :6834-6844
[9]   Capacity-fading prediction of lithium-ion batteries based on discharge curves analysis [J].
Honkura, Kohei ;
Takahashi, Ko ;
Horiba, Tatsuo .
JOURNAL OF POWER SOURCES, 2011, 196 (23) :10141-10147
[10]   A comparative study of equivalent circuit models for Li-ion batteries [J].
Hu, Xiaosong ;
Li, Shengbo ;
Peng, Huei .
JOURNAL OF POWER SOURCES, 2012, 198 :359-367