Highly Electrically Conductive Nanocomposites Based on Polymer-Infused Graphene Sponges

被引:1
作者
Li, Yuanqing [1 ]
Samad, Yarjan Abdul [1 ]
Polychronopoulou, Kyriaki [2 ]
Alhassan, Saeed M. [3 ]
Liao, Kin [1 ]
机构
[1] Khalifa Univ Sci Technol & Res, Dept Aerosp Engn, Abu Dhabi 127788, U Arab Emirates
[2] Khalifa Univ Sci Technol & Res, Dept Mech Engn, Abu Dhabi 127788, U Arab Emirates
[3] Petr Inst, Dept Chem Engn, Abu Dhabi 2533, U Arab Emirates
来源
SCIENTIFIC REPORTS | 2014年 / 4卷
关键词
COMPOSITE FILMS; MECHANICAL-PROPERTIES; THERMAL-CONDUCTIVITY; OXIDE; EPOXY; PERFORMANCE;
D O I
10.1038/srep04652
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Conductive polymer composites require a three-dimensional (3D) network to impart electrical conductivity. A general method that is applicable to most polymers for achieving a desirable graphene 3D network is still a challenge. We have developed a facile technique to fabricate highly electrical conductive composite using vacuum-assisted infusion of epoxy into graphene sponge (GS) scaffold. Macroscopic GSs were synthesized from graphene oxide solution by a hydrothermal method combined with freeze drying. The GS/epoxy composites prepared display consistent isotropic electrical conductivity around 1 S/m, and it is found to be close to that of the pristine GS. Compared with neat epoxy, GS/epoxy has a 12-orders-of-magnitude increase in electrical conductivity, attributed to the compactly interconnected graphene network constructed in the polymer matrix. This method can be extended to other materials to fabricate highly conductive composites for practical applications such as electronic devices, sensors, actuators, and electromagnetic shielding.
引用
收藏
页数:6
相关论文
共 29 条
  • [1] Structure and electric heating performance of graphene/epoxy composite films
    An, Ji-Eun
    Jeong, Young Gyu
    [J]. EUROPEAN POLYMER JOURNAL, 2013, 49 (06) : 1322 - 1330
  • [2] Superior thermal conductivity of single-layer graphene
    Balandin, Alexander A.
    Ghosh, Suchismita
    Bao, Wenzhong
    Calizo, Irene
    Teweldebrhan, Desalegne
    Miao, Feng
    Lau, Chun Ning
    [J]. NANO LETTERS, 2008, 8 (03) : 902 - 907
  • [3] Balandin AA, 2011, NAT MATER, V10, P569, DOI [10.1038/nmat3064, 10.1038/NMAT3064]
  • [4] In situ preparation of functionalized graphene oxide/epoxy nanocomposites with effective reinforcements
    Bao, Chenlu
    Guo, Yuqiang
    Song, Lei
    Kan, Yongchun
    Qian, Xiaodong
    Hu, Yuan
    [J]. JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (35) : 13290 - 13298
  • [5] Spongy Graphene as a Highly Efficient and Recyclable Sorbent for Oils and Organic Solvents
    Bi, Hengchang
    Xie, Xiao
    Yin, Kuibo
    Zhou, Yilong
    Wan, Shu
    He, Longbing
    Xu, Feng
    Banhart, Florian
    Sun, Litao
    Ruoff, Rodney S.
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2012, 22 (21) : 4421 - 4425
  • [6] How a bio-based epoxy monomer enhanced the properties of diglycidyl ether of bisphenol A (DGEBA)/graphene composites
    Cao, Lijun
    Liu, Xiaoqing
    Na, Haining
    Wu, Yonggang
    Zheng, Wenge
    Zhu, Jin
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (16) : 5081 - 5088
  • [7] The electronic properties of graphene
    Castro Neto, A. H.
    Guinea, F.
    Peres, N. M. R.
    Novoselov, K. S.
    Geim, A. K.
    [J]. REVIEWS OF MODERN PHYSICS, 2009, 81 (01) : 109 - 162
  • [8] In situ self-assembly of mild chemical reduction graphene for three-dimensional architectures
    Chen, Wufeng
    Yan, Lifeng
    [J]. NANOSCALE, 2011, 3 (08) : 3132 - 3137
  • [9] Lightweight and Flexible Graphene Foam Composites for High-Performance Electromagnetic Interference Shielding
    Chen, Zongping
    Xu, Chuan
    Ma, Chaoqun
    Ren, Wencai
    Cheng, Hui-Ming
    [J]. ADVANCED MATERIALS, 2013, 25 (09) : 1296 - 1300
  • [10] The rise of graphene
    Geim, A. K.
    Novoselov, K. S.
    [J]. NATURE MATERIALS, 2007, 6 (03) : 183 - 191