Gaussian Process Regression for Forest Attribute Estimation From Airborne Laser Scanning Data

被引:13
|
作者
Varvia, Petri [1 ,2 ]
Lahivaara, Timo [1 ]
Maltamo, Matti [3 ]
Packalen, Petteri [3 ]
Seppanen, Aku [1 ]
机构
[1] Univ Eastern Finland, Dept Appl Phys, FI-70211 Kuopio, Finland
[2] Tampere Univ Technol, Math Lab, FI-33101 Tampere, Finland
[3] Univ Eastern Finland, Sch Forest Sci, FI-80101 Joensuu, Finland
来源
基金
芬兰科学院;
关键词
Area-based approach (ABA); forest inventory; Gaussian process (GP); light detection and ranging (LiDAR); machine learning; LIDAR SAMPLE SURVEY; STAND CHARACTERISTICS; HEDMARK COUNTY; INVENTORY; BIOMASS; PREDICTION; METRICS; MODELS;
D O I
10.1109/TGRS.2018.2883495
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
While the analysis of airborne laser scanning (ALS) data often provides reliable estimates for certain forest stand attributes-such as total volume or basal area-there is still room for improvement, especially in estimating species-specific attributes. Moreover, while the information on the estimate uncertainty would be useful in various economic and environmental analyses on forests, a computationally feasible framework for uncertainty quantifying in ALS is still missing. In this paper, the species-specific stand attribute estimation and uncertainty quantification (UQ) is approached using Gaussian process regression (GPR), which is a nonlinear and nonparametric machine learning method. Multiple species-specific stand attributes are estimated simultaneously: tree height, stem diameter, stem number, basal area, and stem volume. The cross-validation results show that GPR yields on average an improvement of 4.6% in estimate root mean square error over a state-of-the-art k-nearest neighbors (kNNs) implementation, negligible bias and well performing UQ (credible intervals), while being computationally fast. The performance advantage over kNN and the feasibility of credible intervals persists even when smaller training sets are used.
引用
收藏
页码:3361 / 3369
页数:9
相关论文
共 50 条
  • [41] ESTIMATION OF THE PLOT-LEVEL FOREST PARAMETERS FROM TERRESTRIAL LASER SCANNING DATA
    Zhou, Junjie
    Zhou, Guiyun
    Wei, Hongqiang
    Zhang, Xiaodong
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 9014 - 9017
  • [42] Data sources from airborne laser scanning applicable in forest and landscape management decision support systems
    Sackov, I.
    Smrecek, R.
    Kardos, M.
    IMPLEMENTATION OF DSS TOOLS INTO THE FORESTRY PRACTICE, 2013, : 71 - 79
  • [43] Generating an optimal DTM from airborne laser scanning data for landslide mapping in a tropical forest environment
    Razak, Khamarrul Azahari
    Santangelo, Michele
    Van Westen, Cees J.
    Straatsma, Menno W.
    de Jong, Steven M.
    GEOMORPHOLOGY, 2013, 190 : 112 - 125
  • [44] Tree-centric mapping of forest carbon density from airborne laser scanning and hyperspectral data
    Dalponte, Michele
    Coomes, David A.
    METHODS IN ECOLOGY AND EVOLUTION, 2016, 7 (10): : 1236 - 1245
  • [45] Accuracy of Ground Surface Interpolation from Airborne Laser Scanning (ALS) Data in Dense Forest Cover
    Cateanu, Mihnea
    Ciubotaru, Arcadie
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2020, 9 (04)
  • [46] Operational wide-area stem volume estimation based on airborne laser scanning and national forest inventory data
    Hollaus, M.
    Dorigo, W.
    Wagner, W.
    Schadauer, K.
    Hoefle, B.
    Maier, B.
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2009, 30 (19) : 5159 - 5175
  • [47] A comparison of different methods for forest resource estimation using information from airborne laser scanning and CIR orthophotos
    Straub, Christoph
    Weinacker, Holger
    Koch, Barbara
    EUROPEAN JOURNAL OF FOREST RESEARCH, 2010, 129 (06) : 1069 - 1080
  • [48] Influence of Site-Specific Conditions on Estimation of Forest above Ground Biomass from Airborne Laser Scanning
    Novotny, Jan
    Navratilova, Barbora
    Janoutova, Ruzena
    Oulehle, Filip
    Homolova, Lucie
    FORESTS, 2020, 11 (03):
  • [49] A comparison of different methods for forest resource estimation using information from airborne laser scanning and CIR orthophotos
    Christoph Straub
    Holger Weinacker
    Barbara Koch
    European Journal of Forest Research, 2010, 129 : 1069 - 1080
  • [50] Comparison of Methods for Estimation of Stem Volume, Stem Number and Basal Area from Airborne Laser Scanning Data in a Hemi-Boreal Forest
    Lindberg, Eva
    Hollaus, Markus
    REMOTE SENSING, 2012, 4 (04): : 1004 - 1023