Gaussian Process Regression for Forest Attribute Estimation From Airborne Laser Scanning Data

被引:13
|
作者
Varvia, Petri [1 ,2 ]
Lahivaara, Timo [1 ]
Maltamo, Matti [3 ]
Packalen, Petteri [3 ]
Seppanen, Aku [1 ]
机构
[1] Univ Eastern Finland, Dept Appl Phys, FI-70211 Kuopio, Finland
[2] Tampere Univ Technol, Math Lab, FI-33101 Tampere, Finland
[3] Univ Eastern Finland, Sch Forest Sci, FI-80101 Joensuu, Finland
来源
基金
芬兰科学院;
关键词
Area-based approach (ABA); forest inventory; Gaussian process (GP); light detection and ranging (LiDAR); machine learning; LIDAR SAMPLE SURVEY; STAND CHARACTERISTICS; HEDMARK COUNTY; INVENTORY; BIOMASS; PREDICTION; METRICS; MODELS;
D O I
10.1109/TGRS.2018.2883495
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
While the analysis of airborne laser scanning (ALS) data often provides reliable estimates for certain forest stand attributes-such as total volume or basal area-there is still room for improvement, especially in estimating species-specific attributes. Moreover, while the information on the estimate uncertainty would be useful in various economic and environmental analyses on forests, a computationally feasible framework for uncertainty quantifying in ALS is still missing. In this paper, the species-specific stand attribute estimation and uncertainty quantification (UQ) is approached using Gaussian process regression (GPR), which is a nonlinear and nonparametric machine learning method. Multiple species-specific stand attributes are estimated simultaneously: tree height, stem diameter, stem number, basal area, and stem volume. The cross-validation results show that GPR yields on average an improvement of 4.6% in estimate root mean square error over a state-of-the-art k-nearest neighbors (kNNs) implementation, negligible bias and well performing UQ (credible intervals), while being computationally fast. The performance advantage over kNN and the feasibility of credible intervals persists even when smaller training sets are used.
引用
收藏
页码:3361 / 3369
页数:9
相关论文
共 50 条
  • [21] Modeling Mediterranean forest structure using airborne laser scanning data
    Bottalico, Francesca
    Chirici, Gherardo
    Giannini, Raffaello
    Mele, Salvatore
    Mura, Matteo
    Puxeddu, Michele
    McRobert, Ronald E.
    Valbuena, Ruben
    Travaglini, Davide
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2017, 57 : 145 - 153
  • [22] Elevation Accuracy of Forest Road Maps Derived from Aerial Imaging, Airborne Laser Scanning and Mobile Laser Scanning Data
    Kardos, Miroslav
    Sackov, Ivan
    Tomastik, Julian
    Basista, Izabela
    Borowski, Lukasz
    Ferencik, Michal
    FORESTS, 2024, 15 (05):
  • [23] Mobile laser scanning as reference for estimation of stem attributes from airborne laser scanning
    Pires, Raul de Paula
    Lindberg, Eva
    Persson, Henrik Jan
    Olofsson, Kenneth
    Holmgren, Johan
    REMOTE SENSING OF ENVIRONMENT, 2024, 315
  • [24] Timber volume estimation based on airborne laser scanning - comparing the use of national forest inventory and forest management inventory data
    Rahlf, Johannes
    Hauglin, Marius
    Astrup, Rasmus
    Breidenbach, Johannes
    ANNALS OF FOREST SCIENCE, 2021, 78 (02)
  • [25] Timber volume estimation based on airborne laser scanning — comparing the use of national forest inventory and forest management inventory data
    Johannes Rahlf
    Marius Hauglin
    Rasmus Astrup
    Johannes Breidenbach
    Annals of Forest Science, 2021, 78
  • [26] FOREST SPECIES AND BIOMASS ESTIMATION USING AIRBORNE LASER SCANNING AND HYPERSPECTRAL IMAGES
    Chan, Jonathan C. -W.
    Dalponte, Michele
    Ene, Liviu
    Frizzera, Lorenzo
    Miglietta, Franco
    Gianelle, Damian
    2013 5TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2013,
  • [27] AUTOMATED INDIVIDUAL TREE DETECTION IN AMAZON TROPICAL FOREST FROM AIRBORNE LASER SCANNING DATA
    Karantino Millikan, Pedro Henrique
    Silva, Carlos Alberto
    Estraviz Rodriguez, Luiz Carlos
    de Oliveira, Tupiara Mergen
    de Lima Chaves e Carvalho, Mariana Peres
    de Padua Chaves e Carvalhod, Samuel
    CERNE, 2019, 25 (03) : 273 - 282
  • [28] Forest inventory based on canopy height model derived from airborne laser scanning data
    Sackov, Ivan
    CENTRAL EUROPEAN FORESTRY JOURNAL, 2022, 68 (04) : 224 - 231
  • [29] Estimation of regeneration coverage in a temperate forest by 3D segmentation using airborne laser scanning data
    Amiri, Nina
    Yao, Wei
    Heurich, Marco
    Krzystek, Peter
    Skidmore, Andrew K.
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2016, 52 : 252 - 262
  • [30] Estimation of forest structure metrics relevant to hydrologic modelling using coordinate transformation of airborne laser scanning data
    Varhola, A.
    Frazer, G. W.
    Teti, P.
    Coops, N. C.
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2012, 16 (10) : 3749 - 3766