Gaussian Process Regression for Forest Attribute Estimation From Airborne Laser Scanning Data

被引:13
|
作者
Varvia, Petri [1 ,2 ]
Lahivaara, Timo [1 ]
Maltamo, Matti [3 ]
Packalen, Petteri [3 ]
Seppanen, Aku [1 ]
机构
[1] Univ Eastern Finland, Dept Appl Phys, FI-70211 Kuopio, Finland
[2] Tampere Univ Technol, Math Lab, FI-33101 Tampere, Finland
[3] Univ Eastern Finland, Sch Forest Sci, FI-80101 Joensuu, Finland
来源
基金
芬兰科学院;
关键词
Area-based approach (ABA); forest inventory; Gaussian process (GP); light detection and ranging (LiDAR); machine learning; LIDAR SAMPLE SURVEY; STAND CHARACTERISTICS; HEDMARK COUNTY; INVENTORY; BIOMASS; PREDICTION; METRICS; MODELS;
D O I
10.1109/TGRS.2018.2883495
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
While the analysis of airborne laser scanning (ALS) data often provides reliable estimates for certain forest stand attributes-such as total volume or basal area-there is still room for improvement, especially in estimating species-specific attributes. Moreover, while the information on the estimate uncertainty would be useful in various economic and environmental analyses on forests, a computationally feasible framework for uncertainty quantifying in ALS is still missing. In this paper, the species-specific stand attribute estimation and uncertainty quantification (UQ) is approached using Gaussian process regression (GPR), which is a nonlinear and nonparametric machine learning method. Multiple species-specific stand attributes are estimated simultaneously: tree height, stem diameter, stem number, basal area, and stem volume. The cross-validation results show that GPR yields on average an improvement of 4.6% in estimate root mean square error over a state-of-the-art k-nearest neighbors (kNNs) implementation, negligible bias and well performing UQ (credible intervals), while being computationally fast. The performance advantage over kNN and the feasibility of credible intervals persists even when smaller training sets are used.
引用
收藏
页码:3361 / 3369
页数:9
相关论文
共 50 条
  • [1] SUPPORT VECTOR MACHINES REGRESSION FOR ESTIMATION OF FOREST PARAMETERS FROM AIRBORNE LASER SCANNING DATA
    Monnet, J. -M.
    Berger, F.
    Chanussot, J.
    2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 2711 - 2714
  • [2] A nationwide forest attribute map of Sweden predicted using airborne laser scanning data and field data from the National Forest Inventory
    Nilsson, Mats
    Nordkvist, Karin
    Jonzen, Jonas
    Lindgren, Nils
    Axensten, Peder
    Wallerman, Jorgen
    Egberth, Mikael
    Larsson, Svante
    Nilsson, Liselott
    Eriksson, Johan
    Olsson, Hakan
    REMOTE SENSING OF ENVIRONMENT, 2017, 194 : 447 - 454
  • [3] Support Vector Regression for the Estimation of Forest Stand Parameters Using Airborne Laser Scanning
    Monnet, Jean-Matthieu
    Chanussot, Jocelyn
    Berger, Frederic
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2011, 8 (03) : 580 - 584
  • [4] Estimation of fractional forest cover from airborne laser scanning data in abandoned agricultural land
    Puittaimestiku kaardistamine aerolidari andmete põhjal metsana lisanduvatel aladel
    Mõistus, Marta, 1600, Institute of Forestry and Rural Engineering (59):
  • [5] Demonstrating the transferability of forest inventory attribute models derived using airborne laser scanning data
    Tompalski, Piotr
    White, Joanne C.
    Coops, Nicholas C.
    Wulder, Michael A.
    REMOTE SENSING OF ENVIRONMENT, 2019, 227 : 110 - 124
  • [6] Characterization of forest edge structure from airborne laser scanning data
    Bruggisser, Moritz
    Wang, Zuyuan
    Ginzler, Christian
    Webster, Clare
    Waser, Lars T.
    ECOLOGICAL INDICATORS, 2024, 159
  • [7] Accuracy assessment of the nationwide forest attribute map of Norway constructed by using airborne laser scanning data and field data from the national forest inventory
    Garrido, Ana de Lera
    Gobakken, Terje
    Hauglin, Marius
    Naesset, Erik
    Bollandsas, Ole Martin
    SCANDINAVIAN JOURNAL OF FOREST RESEARCH, 2023, 38 (1-2) : 9 - 22
  • [8] Assessing and mitigating systematic errors in forest attribute maps utilizing harvester and airborne laser scanning data
    Raty, Janne
    Hauglin, Marius
    Astrup, Rasmus
    Breidenbach, Johannes
    CANADIAN JOURNAL OF FOREST RESEARCH, 2023, 53 (04) : 284 - 301
  • [9] Indirect and direct estimation of forest biomass change using forest inventory and airborne laser scanning data
    McRoberts, Ronald E.
    Naesset, Erik
    Gobakken, Terje
    Bollandsas, Ole Martin
    REMOTE SENSING OF ENVIRONMENT, 2015, 164 : 36 - 42
  • [10] Sparse Bayesian estimation of forest stand characteristics from airborne laser scanning
    Junttila, Virpi
    Maltamo, Matti
    Kauranne, Tuomo
    FOREST SCIENCE, 2008, 54 (05) : 543 - 552