Boundary integral equations for acoustical inverse sound-soft scattering

被引:8
作者
Ivanyshyn, O. [1 ]
Johansson, B. T. [2 ]
机构
[1] Univ Gottingen, Inst Numer & Appl Math, Gottingen, Germany
[2] Univ Birmingham, Sch Math, Birmingham B15 2TT, W Midlands, England
来源
JOURNAL OF INVERSE AND ILL-POSED PROBLEMS | 2008年 / 16卷 / 01期
关键词
Far field pattern; ill-posed; inverse scattering; Newton method; sound-soft;
D O I
10.1515/JIIP.2008.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The shape of a plane acoustical sound-soft obstacle is detected from knowledge of the far field pattern for one time-harmonic incident field. Two methods based on solving a system of integral equations for the incoming wave and the far field pattern are investigated. Properties of the integral operators required in order to apply regularization, i.e. injectivity and denseness of the range, are proved.
引用
收藏
页码:65 / 78
页数:14
相关论文
共 16 条
[1]   UNIQUENESS THEOREMS FOR THE INVERSE PROBLEM OF ACOUSTIC SCATTERING [J].
COLTON, D ;
SLEEMAN, BD .
IMA JOURNAL OF APPLIED MATHEMATICS, 1983, 31 (03) :253-259
[2]  
Colton D, 2013, CLASS APPL MATH
[3]  
Colton D., 1998, INVERSE ACOUSTIC ELE, DOI DOI 10.1007/978-3-662-03537-5
[4]   Local uniqueness for the inverse scattering problem in acoustics via the Faber-Krahn inequality [J].
Gintides, D .
INVERSE PROBLEMS, 2005, 21 (04) :1195-1205
[5]   Regularizing properties of a truncated Newton-CG algorithm for nonlinear inverse problems [J].
Hanke, M .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1997, 18 (9-10) :971-993
[6]  
Ivanyshyn O., 2007, J. Integral. Equ. Appl., V19, P289
[7]  
Ivanyshyn O., 2006, MATH METHODS SCATTER, P39
[8]  
Ivanyshyn O, 2006, J INTEGRAL EQUAT, V18, P13
[9]  
Johansson T, 2007, IMA J APPL MATH, V72, P96, DOI [10.1093/imamat/hxl026, 10.1093/imamat/hx1026]
[10]   ON THE NUMERICAL-SOLUTION OF A LOGARITHMIC INTEGRAL-EQUATION OF THE 1ST KIND FOR THE HELMHOLTZ-EQUATION [J].
KRESS, R ;
SLOAN, IH .
NUMERISCHE MATHEMATIK, 1993, 66 (02) :199-214