On a Class of Impulsive Functional-Differential Equations with Nonatomic Difference Operator

被引:4
|
作者
Vlasenko, L. A. [1 ]
Rutkas, A. G. [1 ]
机构
[1] Kharkov Natl Univ, Kharkov, Ukraine
关键词
impulsive functional-differential equation; nonatomic difference operator; equation of Sobolev type; equation not of Kovalevskaya type; Sobolev space; operator pencil; Banach space; STABILITY;
D O I
10.1134/S0001434614010040
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish conditions for the existence and uniqueness of the solutions of nonlinear functional-differential equations with impulsive action in a Banach space. The equation under consideration is not solved for the derivative. It is assumed that the characteristic operator pencil corresponding to the linear part of the equation satisfies a constraint of parabolic type in the right half-plane. Applications to partial functional-differential equations not of Kovalevskaya type are considered.
引用
收藏
页码:32 / 42
页数:11
相关论文
共 50 条
  • [41] Positive and negative solutions of impulsive functional differential equations
    Ding, Yanhui
    Chen, Min
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (03): : 922 - 928
  • [42] Impulsive stabilization of functional differential equations with infinite delays
    Luo, ZG
    Shen, JH
    APPLIED MATHEMATICS LETTERS, 2003, 16 (05) : 695 - 701
  • [43] An Efficient Spectral Collocation Algorithm for Solving Neutral Functional-Differential Equations
    Assas, L. M.
    Bhrawy, A. H.
    Alghamdi, M. A.
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2014, 16 (04) : 661 - 669
  • [44] Functional-differential equations in Sobolev spaces and related problems of spectral theory
    Vlasov V.V.
    Medvedev D.A.
    Journal of Mathematical Sciences, 2010, 164 (5) : 659 - 841
  • [45] P-attracting and p-invariant sets for a class of impulsive stochastic functional differential equations
    Xu, Liguang
    Xu, Daoyi
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 57 (01) : 54 - 61
  • [46] Stability of functional differential equations with variable impulsive perturbations via generalized ordinary differential equations
    Afonso, S. M.
    Bonotto, E. M.
    Federson, M.
    Gimenes, L. P.
    BULLETIN DES SCIENCES MATHEMATIQUES, 2013, 137 (02): : 189 - 214
  • [47] IMPACT OF INITIAL TIME DIFFERENCE ON STABILITY CRITERIA OF IMPULSIVE DIFFERENTIAL EQUATIONS
    Mahajan, Pallvi
    Srivastava, Sanjay Kumar
    Dogra, Rakesh
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2021, 11 (03): : 839 - 850
  • [48] Impulsive stabilization of functional differential equations via Liapunov functionals
    Shen, JH
    Luo, ZG
    Liu, XZ
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 240 (01) : 1 - 15
  • [49] New Razumikhin type theorems for impulsive functional differential equations
    Luo, ZG
    Shen, JH
    APPLIED MATHEMATICS AND COMPUTATION, 2002, 125 (2-3) : 375 - 386
  • [50] Stability results for impulsive functional differential equations with infinite delays
    Luo, ZG
    Shen, JH
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 131 (1-2) : 55 - 64