On Global Attractors for a Class of Parabolic Problems

被引:2
|
作者
Figueroa-Lopez, Rodiak [1 ]
Lozada-Cruz, German [1 ]
机构
[1] Univ Estadual Paulista, UNESP, IBILCE, Dept Matemat, BR-15054000 Sao Paulo, Brazil
来源
基金
巴西圣保罗研究基金会;
关键词
Parabolic equation; sectorial operator; global attractor; uniform boundness; NONLINEAR BOUNDARY-CONDITIONS;
D O I
10.12785/amis/080206
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to study the existence of global attractor in H-0(1)(Omega) and uniform bounds of it in L-infinity(Omega) for a class of parabolic problems with homogeneous boundary conditions wich involves a uniform strongly elliptic operator of second order in the domain Omega subset of R-n. The main tools used to prove the existence of global attractor are the techniques used in Hale [8] and Cholewa [5], and for the uniform bound of the attractor we use the Alikakos-Moser iteration procedure [1].
引用
收藏
页码:493 / 500
页数:8
相关论文
共 50 条