DERIVATIVE-EXTENDED POD REDUCED-ORDER MODELING FOR PARAMETER ESTIMATION

被引:9
|
作者
Schmidt, A. [1 ]
Potschka, A. [1 ]
Koerkel, S. [1 ]
Bock, H. G. [1 ]
机构
[1] Heidelberg Univ, Interdisciplinary Ctr Sci Comp IWR, D-69120 Heidelberg, Germany
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2013年 / 35卷 / 06期
关键词
proper orthogonal decomposition; parameter estimation; error estimates; PROPER ORTHOGONAL DECOMPOSITION; ERROR; REDUCTION; EQUATION;
D O I
10.1137/120896694
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we consider model reduction via proper orthogonal decomposition (POD) and its application to parameter estimation problems constrained by parabolic PDEs. We use a first discretize then optimize approach to solve the parameter estimation problem and show that the use of derivative information in the reduced-order model is important. We include directional derivatives directly in the POD snapshot matrix and show that, equivalently to the stationary case, this extension yields a more robust model with respect to changes in the parameters. Moreover, we propose an algorithm that uses derivative-extended POD models together with a Gauss-Newton method. We give an a posteriori error estimate that indicates how far a suboptimal solution obtained with the reduced problem deviates from the solution of the high dimensional problem. Finally we present numerical examples that showcase the efficiency of the proposed approach.
引用
收藏
页码:A2696 / A2717
页数:22
相关论文
共 50 条
  • [31] REDUCED-ORDER OBSERVERS APPLIED TO STATE AND PARAMETER-ESTIMATION OF HYDROMECHANICAL SERVOACTUATORS
    PANOSSIAN, HV
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 1986, 9 (02) : 249 - 251
  • [32] POD-based Reduced-Order Modeling in Fluid Flows using System Identification Strategy
    Imtiaz, Haroon
    Akhtar, Imran
    PROCEEDINGS OF 2020 17TH INTERNATIONAL BHURBAN CONFERENCE ON APPLIED SCIENCES AND TECHNOLOGY (IBCAST), 2020, : 507 - 512
  • [33] RBF-POD reduced-order modeling of flow field in the curved shock compression inlet
    Sun, Fei
    Su, Wei-Yi
    Wang, Mou-Yuan
    Wang, Ren-Jie
    ACTA ASTRONAUTICA, 2021, 185 (185) : 25 - 36
  • [34] Reduced-order modeling for hyperthermia: An extended balanced-realization-based approach
    Mattingly, M
    Bailey, EA
    Dutton, AW
    Roemer, RB
    Devasia, S
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1998, 45 (09) : 1154 - 1162
  • [35] SIMULATION OF FLUID FLOW USING REDUCED-ORDER MODELING BY POD APPROACH APPLIED TO ACADEMIC CASES
    Pomarede, Marie
    Hamdouni, Aziz
    Liberge, Erwan
    Longatte, Elisabeth
    Sigrist, Jean-Francois
    PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE 2010, VOL 4, 2010, : 43 - 49
  • [36] Efficient reduced-order modeling of unsteady aerodynamics robust to flight parameter variations
    Liu, Haojie
    Hu, Haiyan
    Zhao, Yonghui
    Huang, Rui
    JOURNAL OF FLUIDS AND STRUCTURES, 2014, 49 : 728 - 741
  • [37] New Regularization Method for Calibrated POD Reduced-Order Models
    Abou El Majd, Badr
    Cordier, Laurent
    MATHEMATICAL MODELLING AND ANALYSIS, 2016, 21 (01) : 47 - 62
  • [38] Reduced-Order Modeling for Dynamic Mode Decomposition Without an Arbitrary Sparsity Parameter
    Graff, John
    Ringuette, Matthew J.
    Singh, Tarunraj
    Lagor, Francis D.
    AIAA JOURNAL, 2020, 58 (09) : 3919 - 3931
  • [39] Nonlinear reduced-order state and parameter observer
    Haessig, DA
    Friedland, B
    PROCEEDINGS OF THE 2001 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2001, : 1978 - 1980
  • [40] A POD REDUCED-ORDER SPDMFE EXTRAPOLATING ALGORITHM FOR HYPERBOLIC EQUATIONS
    Luo, Zhendong
    Li, Hong
    ACTA MATHEMATICA SCIENTIA, 2014, 34 (03) : 872 - 890