DERIVATIVE-EXTENDED POD REDUCED-ORDER MODELING FOR PARAMETER ESTIMATION

被引:9
|
作者
Schmidt, A. [1 ]
Potschka, A. [1 ]
Koerkel, S. [1 ]
Bock, H. G. [1 ]
机构
[1] Heidelberg Univ, Interdisciplinary Ctr Sci Comp IWR, D-69120 Heidelberg, Germany
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2013年 / 35卷 / 06期
关键词
proper orthogonal decomposition; parameter estimation; error estimates; PROPER ORTHOGONAL DECOMPOSITION; ERROR; REDUCTION; EQUATION;
D O I
10.1137/120896694
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we consider model reduction via proper orthogonal decomposition (POD) and its application to parameter estimation problems constrained by parabolic PDEs. We use a first discretize then optimize approach to solve the parameter estimation problem and show that the use of derivative information in the reduced-order model is important. We include directional derivatives directly in the POD snapshot matrix and show that, equivalently to the stationary case, this extension yields a more robust model with respect to changes in the parameters. Moreover, we propose an algorithm that uses derivative-extended POD models together with a Gauss-Newton method. We give an a posteriori error estimate that indicates how far a suboptimal solution obtained with the reduced problem deviates from the solution of the high dimensional problem. Finally we present numerical examples that showcase the efficiency of the proposed approach.
引用
收藏
页码:A2696 / A2717
页数:22
相关论文
共 50 条
  • [21] POD and CVT-based reduced-order modeling of Navier-Stokes flows
    Burkardt, John
    Gunzburger, Max
    Lee, Hyung-Chun
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 196 (1-3) : 337 - 355
  • [22] Principal interval decomposition framework for POD reduced-order modeling of convective Boussinesq flows
    San, O.
    Borggaard, J.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2015, 78 (01) : 37 - 62
  • [23] Regularization method for calibrated POD reduced-order models
    Abou El Majd, Badr
    Cordier, Laurent
    CSNDD 2014 - INTERNATIONAL CONFERENCE ON STRUCTURAL NONLINEAR DYNAMICS AND DIAGNOSIS, 2014, 16
  • [24] Application of POD reduced-order algorithm on data-driven modeling of rod bundle
    Kang, Huilun
    Tian, Zhaofei
    Chen, Guangliang
    Li, Lei
    Wang, Tianyu
    NUCLEAR ENGINEERING AND TECHNOLOGY, 2022, 54 (01) : 36 - 48
  • [25] POD reduced-order modeling for evolution equations utilizing arbitrary finite element discretizations
    Carmen Gräßle
    Michael Hinze
    Advances in Computational Mathematics, 2018, 44 : 1941 - 1978
  • [26] Reduced-order modeling by POD-multiphase approach for fluid-structure interaction
    Liberge, Erwan
    Pomarede, Marie
    Hamdouni, Aziz
    EUROPEAN JOURNAL OF COMPUTATIONAL MECHANICS, 2010, 19 (1-3): : 41 - 52
  • [27] REDUCED-ORDER PARAMETER-ESTIMATION FOR CONTINUOUS SYSTEMS FROM SAMPLED DATA
    LIAW, CM
    OUYANG, M
    PAN, CT
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 1990, 112 (02): : 305 - 308
  • [28] Reduced-Order Nonlinear Arterial Compliance Parameter Estimation Under Vasoactive States
    Phan, Timothy S.
    Li, John K-J.
    2013 IEEE SIGNAL PROCESSING IN MEDICINE AND BIOLOGY SYMPOSIUM (SPMB), 2013,
  • [29] Error estimation of reduced-order modeling of high speed RLCG circuit
    Lu, NL
    Hajj, IN
    IEEE SYMPOSIUM ON IC/PACKAGE DESIGN INTEGRATION - PROCEEDINGS, 1998, : 143 - 148
  • [30] Reduced-order modelling and parameter estimation for a quarter-car suspension system
    Kim, C
    Ro, PI
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING, 2000, 214 (D8) : 851 - 864