Molecular dynamics simulations of shock-compressed single-crystal silicon

被引:44
作者
Mogni, Gabriele [1 ]
Higginbotham, Andrew [1 ]
Gaal-Nagy, Katalin [2 ]
Park, Nigel [3 ]
Wark, Justin S. [1 ]
机构
[1] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England
[2] Univ Regensburg, Inst Theoret Phys, D-93040 Regensburg, Germany
[3] AWE, Reading RG7 4PR, Berks, England
基金
英国工程与自然科学研究理事会;
关键词
X-RAY-DIFFRACTION; PHASE-TRANSITION STRESSES; AXIAL YIELD STRENGTHS; HIGH-PRESSURE; ATOMISTIC SIMULATION; WAVE; STRAIN; DEFORMATION; DEPENDENCE; SI;
D O I
10.1103/PhysRevB.89.064104
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present molecular dynamics simulations using a Tersoff-like potential of single crystals of silicon shock compressed along the < 001 > direction. We find an elastic response up to a critical stress, above which the shear stress is relieved by an inelastic response associated with a partial transformation to a new high-pressure phase, where both the new phase (Imma) and the original cubic diamond phase are under close to hydrostatic conditions. We study how the fraction of the two phases is related to both their geometry and their enthalpy, and discuss the relevance of the results to previous experimental measurements of the response of silicon to shock compression. We note that the simulations are consistent with shear stress relief provided directly by the shock-induced phase transition itself, without an intermediate state of plastic deformation of the cubic diamond phase, but that the onset of inelastic behavior within the simulations still occurs at considerably higher stresses than found in experiments.
引用
收藏
页数:10
相关论文
共 50 条
[41]   Molecular dynamics simulation of fatigue damage formation in single-crystal/polycrystalline aluminum [J].
Shen, Jinchuan ;
Shen, Xingquan ;
Zhou, Jinjie ;
Yue, Wenying ;
Zhang, Tianyu .
MATERIALS TODAY COMMUNICATIONS, 2024, 39
[42]   Investigation of the elastically shock-compressed region and elastic-plastic shock transition in single-crystalline copper to understand the dislocation nucleation mechanism under shock compression [J].
Bisht, A. ;
Neogi, A. ;
Mitra, N. ;
Jagadeesh, G. ;
Suwas, S. .
SHOCK WAVES, 2019, 29 (07) :913-927
[43]   MOLECULAR DYNAMICS SIMULATIONS OF SHOCK LOADING OF MATERIALS: A REVIEW AND TUTORIAL [J].
Wood, Mitchell A. ;
Cherukara, Mathew J. ;
Antillon, Edwin ;
Strachan, Alejandro .
REVIEWS IN COMPUTATIONAL CHEMISTRY, VOL 30, 2017, 30 :43-92
[44]   Characteristic Sizes for Exhaustion-Hardening Mechanism of Compressed Cu Single-Crystal Micropillars [J].
Gao Yuan ;
Zhuang Zhuo ;
Liu Zhan-Li ;
Zhao Xue-Chuan ;
Zhang Zhao-Hui .
CHINESE PHYSICS LETTERS, 2010, 27 (08)
[45]   A study of ultraprecision mechanical polishing of single-crystal silicon with laser nano-structured diamond abrasive by molecular dynamics simulation [J].
Dai, Houfu ;
Zhang, Fa ;
Chen, Jianbin .
INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2019, 157 :254-266
[46]   Non-Equilibrium Molecular Dynamics Simulations of Spall in Single Crystal Tantalum [J].
Hahn, Eric N. ;
Germann, Timothy C. ;
Ravelo, Ramon J. ;
Hammerberg, James E. ;
Meyers, Marc A. .
SHOCK COMPRESSION OF CONDENSED MATTER - 2015, 2017, 1793
[47]   Shear behaviors of single crystal nickel at different temperatures: molecular dynamics simulations [J].
Li, Lili ;
Han, Ming .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2015, 119 (03) :1101-1107
[48]   Shock compression of [001] single crystal silicon [J].
Zhao, S. ;
Hahn, E. N. ;
Kad, B. ;
Remington, B. A. ;
Bringa, E. M. ;
Meyers, M. A. .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2016, 225 (02) :335-341
[49]   Orientation and strain rate dependent tensile behavior of single crystal titanium nanowires by molecular dynamics simulations [J].
Chang, Le ;
Zhou, Chang-Yu ;
Liu, Hong-Xi ;
Li, Jian ;
He, Xiao-Hua .
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2018, 34 (05) :864-877
[50]   Phase transformation behavior in titanium single-crystal nanopillars under [0001] orientation tension: A molecular dynamics simulation [J].
Ren, Junqiang ;
Sun, Qiaoyan ;
Xiao, Lin ;
Ding, Xiangdong ;
Sun, Jun .
COMPUTATIONAL MATERIALS SCIENCE, 2014, 92 :8-12