LITTLEWOOD-PALEY THEORY AND REGULARITY ISSUES IN BOLTZMANN HOMOGENEOUS EQUATIONS II. NON CUTOFF CASE AND NON MAXWELLIAN MOLECULES

被引:29
作者
Alexandre, Radjesvarane [1 ]
Elsafadi, Mouhamad [2 ]
机构
[1] Ecole Navale, IRENAV, French Naval Acad, F-29240 Brest Armees, France
[2] Univ Orleans, MAPMO, UMR 6628, F-45067 Orleans 2, France
关键词
Dimension theory; Poincare recurrences; multifractal analysis; SMOOTHNESS;
D O I
10.3934/dcds.2009.24.1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We use Littlewood-Paley theory for the analysis of regularization properties of weak solutions of the homogeneous Boltzmann equation. For non cutoff and non Maxwellian molecules,we show that such solutions are smoother than the initial data. In particular, our method applies to any weak solution, though we assume that it belongs to a weighted L-2 space.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 21 条
[1]   Entropy dissipation and long-range interactions [J].
Alexandre, R ;
Desvillettes, L ;
Villani, C ;
Wennberg, B .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2000, 152 (04) :327-355
[2]   Littlewood-Paley theory and regularity issues in Boltzmann homogeneous equations I. Non-cutoff case and Maxwellian molecules [J].
Alexandre, R ;
El Safadi, M .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2005, 15 (06) :907-920
[3]  
ALEXANDRE R, INTEGRAL KERNAL ES 2
[4]  
ALEXANDRE R, REGULARIZATION PROPE
[5]  
ALEXANDRE R, 2006, LECT NOTES GIVEN DUR
[6]   Integral estimates for a linear singular operator linked with the Boltzmann operator.: Part I:: Small singularities 0-<-v-<-1 [J].
Alexandre, Radjesvarane .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2006, 55 (06) :1975-2021
[7]  
[Anonymous], 2010, Theory of Function Spaces
[8]  
CERCIGNANI C, 1988, BOLTZMANN EQUATION A
[9]  
CHEN Y, 2006, SMOOTHING EFFECTS CL
[10]   About LP estimates for the spatially homogeneous Boltzmann equation [J].
Desvillettes, L ;
Mouhot, C .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2005, 22 (02) :127-142