On the symmetric doubly stochastic inverse eigenvalue problem

被引:18
作者
Lei, Ying-Jie [1 ]
Xu, Wei-Ru [1 ]
Lu, Yong [1 ]
Niu, Yan-Ru [1 ]
Gu, Xian-Ming [2 ]
机构
[1] North Univ China, Sch Sci, Taiyuan 030051, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Peoples R China
基金
中国国家自然科学基金;
关键词
Inverse eigenvalue problem; Symmetric doubly stochastic matrix; Symmetric positive doubly; stochastic matrix; Sufficient condition; Convexity; NONNEGATIVE MATRICES; SPECTRUM;
D O I
10.1016/j.laa.2013.12.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let sigma = (1, lambda(2), ... , lambda(n)) be a list of real numbers. The symmetric doubly stochastic inverse eigenvalue problem (hereafter SDIEP) is to determine the list sigma which can occur as the spectrum of an n x n symmetric doubly stochastic matrix A. If the matrix A is positive, we can necessarily obtain a subproblem, symmetric positive doubly stochastic inverse eigenvalue problem (hereafter SPDIEP), of the SDIEP. In this paper, we give some sufficient conditions for the SDIEP and SPDIEP and prove that the set formed by the spectra of all n x n symmetric positive doubly stochastic matrices is non-convex for n >= 4. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:181 / 205
页数:25
相关论文
共 33 条
[1]  
[Anonymous], ELECT J LINEAR ALGEB
[2]  
[Anonymous], 2001, Matrix Analysis and Applied Linear Algebra
[3]   SOME APPLICATIONS OF DOUBLY STOCHASTIC MATRICES [J].
BRUALDI, RA .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1988, 107 :77-100
[4]  
Ccapa J, 2009, ELECTRON J LINEAR AL, V18, P462
[5]  
Chu M.T., 2005, Inverse eigenvalue problems
[6]  
Davis P. J., 1979, Circulant Matrices
[7]   The nonnegative inverse eigenvalue problem [J].
Egleston, PD ;
Lenker, TD ;
Narayan, SK .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 379 :475-490
[8]  
Elsner L, 1998, LINEAR ALGEBRA APPL, V271, P323
[9]   A note on the inverse eigenvalue problem for symmetric doubly stochastic matrices [J].
Fang, Maozhong .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (11) :2925-2927
[10]  
Horn R.A., 2012, Matrix Analysis