Hierarchical Sparse Dictionary Learning

被引:1
作者
Bian, Xiao [1 ]
Ning, Xia [2 ]
Jiang, Geoff [3 ]
机构
[1] N Carolina State Univ, Elect & Comp Engn Dept, Raleigh, NC 27695 USA
[2] Indiana Univ Purdue Univ, Dept Comp & Informat Sci, Indianapolis, IN 46202 USA
[3] NEC Labs Amer, Auton Management Dept, Princeton, NJ 45237 USA
来源
MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2015, PT II | 2015年 / 9285卷
关键词
K-SVD; REPRESENTATION; ALGORITHM;
D O I
10.1007/978-3-319-23525-7_42
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Sparse coding plays a key role in high dimensional data analysis. One critical challenge of sparse coding is to design a dictionary that is both adaptive to the training data and generalizable to unseen data of same type. In this paper, we propose a novel dictionary learning method to build an adaptive dictionary regularized by an a-priori over-completed dictionary. This leads to a sparse structure of the learned dictionary over the a-priori dictionary, and a sparse structure of the data over the learned dictionary. We apply the hierarchical sparse dictionary learning approach on both synthetic data and real-world high-dimensional time series data. The experimental results demonstrate that the hierarchical sparse dictionary learning approach reduces overfitting and enhances the generalizability of the learned dictionary. Moreover, the learned dictionary is optimized to adapt to the given data and result in a more compact dictionary and a more robust sparse representation. The experimental results on real datasets demonstrate that the proposed approach can successfully characterize the heterogeneity of the given data, and leads to a better and more robust dictionary.
引用
收藏
页码:687 / 700
页数:14
相关论文
共 50 条
[41]   Image Classification via Hierarchical Dictionary Learning [J].
Sun, Peng ;
Zhu, Songhao ;
Ju, Xuewen ;
Guo, Wenbo .
PROCEEDINGS OF THE 2019 31ST CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2019), 2019, :4630-4634
[42]   Minimax Reconstruction Risk of Convolutional Sparse Dictionary Learning [J].
Singh, Shashank ;
Poczos, Barnabas ;
Ma, Jian .
INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 84, 2018, 84
[43]   Group sparse based locality - sensitive dictionary learning for video semantic analysis [J].
Benuwa, Ben-Bright ;
Zhan, Yongzhao ;
Liu, JunQi ;
Gou, Jianping ;
Ghansah, Benjamin ;
Ansah, Ernest K. .
MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (06) :6721-6744
[44]   Hyperspectral Anomaly Detection via Sparse Dictionary Learning Method of Capped Norm [J].
Yuan, Yuan ;
Ma, Dandan ;
Wang, Qi .
IEEE ACCESS, 2019, 7 :16132-16144
[45]   Sparse adversarial image generation using dictionary learning [J].
Jahangir, Maham ;
Shafait, Faisal .
JOURNAL OF ELECTRONIC IMAGING, 2023, 32 (03)
[46]   Multi-Attributed Dictionary Learning for Sparse Coding [J].
Chiang, Chen-Kuo ;
Su, Te-Feng ;
Yen, Chih ;
Lai, Shang-Hong .
2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2013, :1137-1144
[47]   Vehicle Sparse Recognition via Class Dictionary Learning [J].
Liu, Ji-xin ;
Sun, Ning ;
Han, Guang ;
Yang, Haigen .
2017 2ND INTERNATIONAL CONFERENCE ON IMAGE, VISION AND COMPUTING (ICIVC 2017), 2017, :185-188
[48]   Distributed Dictionary Learning for Sparse Representation in Sensor Networks [J].
Liang, Junli ;
Zhang, Miaohua ;
Zeng, Xianyu ;
Yu, Guoyang .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2014, 23 (06) :2528-2541
[49]   Sparse coding and dictionary learning for electron hologram denoising [J].
Anada, Satoshi ;
Nomura, Yuki ;
Hirayama, Tsukasa ;
Yamamoto, Kazuo .
ULTRAMICROSCOPY, 2019, 206
[50]   Latent Dictionary Learning for Sparse Representation based Classification [J].
Yang, Meng ;
Dai, Dengxin ;
Shen, Linlin ;
Van Gool, Luc .
2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, :4138-4145