Hierarchical Sparse Dictionary Learning

被引:1
作者
Bian, Xiao [1 ]
Ning, Xia [2 ]
Jiang, Geoff [3 ]
机构
[1] N Carolina State Univ, Elect & Comp Engn Dept, Raleigh, NC 27695 USA
[2] Indiana Univ Purdue Univ, Dept Comp & Informat Sci, Indianapolis, IN 46202 USA
[3] NEC Labs Amer, Auton Management Dept, Princeton, NJ 45237 USA
来源
MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2015, PT II | 2015年 / 9285卷
关键词
K-SVD; REPRESENTATION; ALGORITHM;
D O I
10.1007/978-3-319-23525-7_42
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Sparse coding plays a key role in high dimensional data analysis. One critical challenge of sparse coding is to design a dictionary that is both adaptive to the training data and generalizable to unseen data of same type. In this paper, we propose a novel dictionary learning method to build an adaptive dictionary regularized by an a-priori over-completed dictionary. This leads to a sparse structure of the learned dictionary over the a-priori dictionary, and a sparse structure of the data over the learned dictionary. We apply the hierarchical sparse dictionary learning approach on both synthetic data and real-world high-dimensional time series data. The experimental results demonstrate that the hierarchical sparse dictionary learning approach reduces overfitting and enhances the generalizability of the learned dictionary. Moreover, the learned dictionary is optimized to adapt to the given data and result in a more compact dictionary and a more robust sparse representation. The experimental results on real datasets demonstrate that the proposed approach can successfully characterize the heterogeneity of the given data, and leads to a better and more robust dictionary.
引用
收藏
页码:687 / 700
页数:14
相关论文
共 50 条
[1]   Sparse Bayesian dictionary learning with a Gaussian hierarchical model [J].
Yang, Linxiao ;
Fang, Jun ;
Cheng, Hong ;
Li, Hongbin .
SIGNAL PROCESSING, 2017, 130 :93-104
[2]   Sparse Bayesian Dictionary Learning with a Gaussian Hierarchical Model [J].
Yang, Linxiao ;
Fang, Jun ;
Li, Hongbin .
2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING PROCEEDINGS, 2016, :2564-2568
[3]   Hierarchical Dictionary Learning and Sparse Coding for Static Signature Verification [J].
Zois, Elias N. ;
Papagiannopoulou, Marianna ;
Tsourounis, Dimitrios ;
Economou, George .
PROCEEDINGS 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2018, :545-555
[4]   Joint Sparse Regularization for Dictionary Learning [J].
Miao, Jianyu ;
Cao, Heling ;
Jin, Xiao-Bo ;
Ma, Rongrong ;
Fei, Xuan ;
Niu, Lingfeng .
COGNITIVE COMPUTATION, 2019, 11 (05) :697-710
[5]   Hierarchical Locality-Aware Deep Dictionary Learning for Classification [J].
Gou, Jianping ;
He, Xin ;
Du, Lan ;
Yu, Baosheng ;
Chen, Wenbai ;
Yi, Zhang .
IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 :447-461
[6]   An MDL Framework for Sparse Coding and Dictionary Learning [J].
Ramirez, Ignacio ;
Sapiro, Guillermo .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (06) :2913-2927
[7]   Learning Discriminative Dictionary for Group Sparse Representation [J].
Sun, Yubao ;
Liu, Qingshan ;
Tang, Jinhui ;
Tao, Dacheng .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2014, 23 (09) :3816-3828
[8]   Fisher Discrimination Dictionary Learning for Sparse Representation [J].
Yang, Meng ;
Zhang, Lei ;
Feng, Xiangchu ;
Zhang, David .
2011 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2011, :543-550
[9]   Sparse embedded dictionary learning on face recognition [J].
Chen, Yefei ;
Su, Jianbo .
PATTERN RECOGNITION, 2017, 64 :51-59
[10]   Adaptive Compressive Beamforming Based on Bi-Sparse Dictionary Learning [J].
Guo, Qijia ;
Xin, Zhinan ;
Zhou, Tian ;
Yin, Jingwei ;
Cui, Hong-Liang .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71