Hierarchical Sparse Dictionary Learning

被引:1
|
作者
Bian, Xiao [1 ]
Ning, Xia [2 ]
Jiang, Geoff [3 ]
机构
[1] N Carolina State Univ, Elect & Comp Engn Dept, Raleigh, NC 27695 USA
[2] Indiana Univ Purdue Univ, Dept Comp & Informat Sci, Indianapolis, IN 46202 USA
[3] NEC Labs Amer, Auton Management Dept, Princeton, NJ 45237 USA
来源
MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2015, PT II | 2015年 / 9285卷
关键词
K-SVD; REPRESENTATION; ALGORITHM;
D O I
10.1007/978-3-319-23525-7_42
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Sparse coding plays a key role in high dimensional data analysis. One critical challenge of sparse coding is to design a dictionary that is both adaptive to the training data and generalizable to unseen data of same type. In this paper, we propose a novel dictionary learning method to build an adaptive dictionary regularized by an a-priori over-completed dictionary. This leads to a sparse structure of the learned dictionary over the a-priori dictionary, and a sparse structure of the data over the learned dictionary. We apply the hierarchical sparse dictionary learning approach on both synthetic data and real-world high-dimensional time series data. The experimental results demonstrate that the hierarchical sparse dictionary learning approach reduces overfitting and enhances the generalizability of the learned dictionary. Moreover, the learned dictionary is optimized to adapt to the given data and result in a more compact dictionary and a more robust sparse representation. The experimental results on real datasets demonstrate that the proposed approach can successfully characterize the heterogeneity of the given data, and leads to a better and more robust dictionary.
引用
收藏
页码:687 / 700
页数:14
相关论文
共 50 条
  • [1] Sparse Bayesian dictionary learning with a Gaussian hierarchical model
    Yang, Linxiao
    Fang, Jun
    Cheng, Hong
    Li, Hongbin
    SIGNAL PROCESSING, 2017, 130 : 93 - 104
  • [2] Sparse Bayesian Dictionary Learning with a Gaussian Hierarchical Model
    Yang, Linxiao
    Fang, Jun
    Li, Hongbin
    2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING PROCEEDINGS, 2016, : 2564 - 2568
  • [3] Hierarchical Dictionary Learning and Sparse Coding for Static Signature Verification
    Zois, Elias N.
    Papagiannopoulou, Marianna
    Tsourounis, Dimitrios
    Economou, George
    PROCEEDINGS 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2018, : 545 - 555
  • [4] Joint Sparse Regularization for Dictionary Learning
    Miao, Jianyu
    Cao, Heling
    Jin, Xiao-Bo
    Ma, Rongrong
    Fei, Xuan
    Niu, Lingfeng
    COGNITIVE COMPUTATION, 2019, 11 (05) : 697 - 710
  • [5] Hierarchical Locality-Aware Deep Dictionary Learning for Classification
    Gou, Jianping
    He, Xin
    Du, Lan
    Yu, Baosheng
    Chen, Wenbai
    Yi, Zhang
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 447 - 461
  • [6] Sparse embedded dictionary learning on face recognition
    Chen, Yefei
    Su, Jianbo
    PATTERN RECOGNITION, 2017, 64 : 51 - 59
  • [7] An MDL Framework for Sparse Coding and Dictionary Learning
    Ramirez, Ignacio
    Sapiro, Guillermo
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (06) : 2913 - 2927
  • [8] Learning Discriminative Dictionary for Group Sparse Representation
    Sun, Yubao
    Liu, Qingshan
    Tang, Jinhui
    Tao, Dacheng
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2014, 23 (09) : 3816 - 3828
  • [9] Fisher Discrimination Dictionary Learning for Sparse Representation
    Yang, Meng
    Zhang, Lei
    Feng, Xiangchu
    Zhang, David
    2011 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2011, : 543 - 550
  • [10] Adaptive Compressive Beamforming Based on Bi-Sparse Dictionary Learning
    Guo, Qijia
    Xin, Zhinan
    Zhou, Tian
    Yin, Jingwei
    Cui, Hong-Liang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71