Molecular Mechanisms of Subcellular Localization of ABCG5 and ABCG8

被引:30
|
作者
Hirata, Takashi [1 ]
Okabe, Morio [1 ]
Kobayashi, Aya [1 ]
Ueda, Kazumitsu [1 ,2 ]
Matsuo, Michinori [1 ]
机构
[1] Kyoto Univ, Lab Cellular Biochem, Div Appl Life Sci, Grad Sch Agr, Kyoto 6068502, Japan
[2] Kyoto Univ, Inst Integrated Cell Mat Sci iCeMS, Kyoto 6068502, Japan
关键词
cholesterol; plant sterol; ATP-binding cassette (ABC) protein; membrane trafficking; endoplasmic reticulum (ER) retention; BINDING CASSETTE TRANSPORTERS; CANCER RESISTANCE PROTEIN; CHOLESTEROL EFFLUX; PLASMA-MEMBRANE; TRAFFICKING; MICE; HETERODIMERIZATION; ATHEROSCLEROSIS; OVEREXPRESSION; EXPRESSION;
D O I
10.1271/bbb.80694
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Human ABCG subfamily proteins ABCG1, ABCG2, ABCG4, ABCG5, and ABCG8 are half-type ATP-binding cassette (ABC) proteins that transport sterols or xenobiotics. ABCG1, ABCG2, and ABCG4 function as homodimers on the plasma membrane. In contrast, ABCG5 and ABCG8 function as heterodimers on the plasma membrane, and the homodimer of either ABCG5 or ABCG8 is retained in the endoplasmic reticulum (ER). To examine the molecular mechanisms of the regulated trafficking of ABCG5 and ABCG8, the subcellular localizations of chimeric proteins, fused with ABCG1 or ABCG2, were analyzed. Homodimers of chimeric proteins, in which the N-terminal cytosolic domain of ABCG1 or ABCG2 was fused to the C-terminal transmembrane domain of ABCG5 or ABCG8 localized to the plasma membrane, whereas chimeric proteins in which the N-terminal cytosolic domain of ABCG5 or ABCG8 was fused to the C-terminal transmembrane domain of ABCG1 or ABCG2 localized to the ER. Mutations in ER-retrieval motif-like sequences in ABCG5 or ABCG8 did not affect their subcellular localization. This suggests that the N-terminal cytosolic domains of ABCG5 and ABCG8 are involved in ER retention of their homodimers, and that novel ER-retention or -retrieval motifs exist within these domains.
引用
收藏
页码:619 / 626
页数:8
相关论文
共 50 条
  • [31] Purification and ATP hydrolysis of the putative cholesterol transporters ABCG5 and ABCG8
    Wang, Zhanling
    Stalcup, Lindsay D.
    Harvey, Brandy J.
    Weber, Joachim
    Chloupkova, Maja
    Dumont, Mark E.
    Dean, Michael
    Urbatsch, Ina L.
    BIOCHEMISTRY, 2006, 45 (32) : 9929 - 9939
  • [32] Evolutionary origin and sequence signatures of the heterodimeric ABCG5/ABCG8 transporter
    Pei, Jimin
    Cong, Qian
    PROTEIN SCIENCE, 2022, 31 (05)
  • [33] ABCG5 and ABCG8 gene variations associated with sitosterolemia and platelet dysfunction
    Maria Bastida, Jose
    Benito, Rocio
    Ramon Gonzalez-Porras, Jose
    Rivera, Jose
    PLATELETS, 2021, 32 (04) : 573 - 577
  • [34] Ezetimibe normalizes metabolic defects in mice lacking ABCG5 and ABCG8
    Yu, LQ
    von Bergmann, K
    Lütjohann, D
    Hobbs, HH
    Cohen, JC
    JOURNAL OF LIPID RESEARCH, 2005, 46 (08) : 1739 - 1744
  • [35] Recent advances in understanding the STSL locus and ABCG5/ABCG8 biology
    Patel, Shailendra B.
    CURRENT OPINION IN LIPIDOLOGY, 2014, 25 (03) : 169 - 175
  • [36] Serum sitosterol level predicting ABCG5 or ABCG8 genetic mutations
    Kojima, Nobuko
    Tada, Hayato
    Usui, Soichiro
    Sakata, Kenji
    Hayashi, Kenshi
    Nohara, Atsushi
    Inazu, Akihiro
    Takamura, Masayuki
    Kawashiri, Masa-aki
    CLINICA CHIMICA ACTA, 2020, 507 : 11 - 16
  • [37] Purification and reconstitution of sterol transfer by native mouse ABCG5 and ABCG8
    Wang, Jin
    Zhang, Da-wei
    Lei, Ying
    Xu, Fang
    Cohen, Jonathan C.
    Hobbs, Helen H.
    Xie, Xiao-Song
    BIOCHEMISTRY, 2008, 47 (18) : 5194 - 5204
  • [38] Destabilization of the ABCG5 ABCG8 sterol transporter in db/db mice
    Sabeva, Nadezhda S.
    Adams, Jennifer M.
    Gay, Aaron M.
    Rouse, Eric J.
    Graf, Gregory A.
    CIRCULATION, 2006, 114 (18) : 225 - 225
  • [39] Sterolins ABCG5 and ABCG8: regulators of whole body dietary sterols
    Starr E. Hazard
    Shailendra B. Patel
    Pflügers Archiv - European Journal of Physiology, 2007, 453 : 745 - 752
  • [40] Hepatic or intestinal ABCG5 and ABCG8 are sufficient to block the development of sitosterolemia
    Temel, Ryan
    JOURNAL OF LIPID RESEARCH, 2015, 56 (02) : 201 - 202