Transmission Dynamics of a Two-City SIR Epidemic Model with Transport-Related Infections

被引:5
作者
Chen, Yao [1 ,2 ,3 ]
Yan, Mei [2 ]
Xiang, Zhongyi [1 ,2 ]
机构
[1] Key Lab Biol Resources Protect & Utilizat Hubei P, Enshi 445000, Hubei, Peoples R China
[2] Hubei Univ Nationalities, Dept Math, Enshi 445000, Hubei, Peoples R China
[3] Hubei Univ Nationalities, Coll Sci & Technol, Enshi 445000, Hubei, Peoples R China
关键词
PATCHY ENVIRONMENT; DISEASE;
D O I
10.1155/2014/764278
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A two-city SIR epidemic model with transport-related infections is proposed. Some good analytical results are given for this model. If the basic reproduction number R-0 gamma <= 1, there exists a disease-free equilibrium which is globally asymptotically stable. There exists an endemic equilibrium which is locally asymptotically stable if the basic reproduction number R-0 gamma > 1. We also show the permanence of this SIR model. In addition, sufficient conditions are established for global asymptotic stability of the endemic equilibrium.
引用
收藏
页数:12
相关论文
共 19 条
[1]   Modeling the Dynamics of an Epidemic under Vaccination in Two Interacting Populations [J].
Ahmed, Ibrahim H. I. ;
Witbooi, Peter J. ;
Patidar, Kailash .
JOURNAL OF APPLIED MATHEMATICS, 2012,
[2]   Asymptotic profiles of the steady states for an sis epidemic patch model [J].
Allen, L. J. S. ;
Bolker, B. M. ;
Lou, Y. ;
Nevai, A. L. .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2007, 67 (05) :1283-1309
[3]   Quarantine in a multi-species epidemic model with spatial dynamics [J].
Arino, Julien ;
Jordan, Richard ;
van den Driessche, P. .
MATHEMATICAL BIOSCIENCES, 2007, 206 (01) :46-60
[4]   Spreading disease with transport-related infection [J].
Cui, JA ;
Takeuchi, Y ;
Saito, Y .
JOURNAL OF THEORETICAL BIOLOGY, 2006, 239 (03) :376-390
[5]   Global Stability of Multigroup Dengue Disease Transmission Model [J].
Ding, Deqiong ;
Wang, Xueping ;
Ding, Xiaohua .
JOURNAL OF APPLIED MATHEMATICS, 2012,
[6]   Stochastic SIRS model under regime switching [J].
Han, Zhixia ;
Zhao, Jiandong .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2013, 14 (01) :352-364
[7]   Contribution to the mathematical theory of epidemics [J].
Kermack, WO ;
McKendrick, AG .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-CONTAINING PAPERS OF A MATHEMATICAL AND PHYSICAL CHARACTER, 1927, 115 (772) :700-721
[8]   Analysis of the permanence of an SIR epidemic model with logistic process and distributed time delay [J].
Li, Chun-Hsien ;
Tsai, Chiung-Chiou ;
Yang, Suh-Yuh .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (09) :3696-3707
[9]   Global stability of an SEIR epidemic model with constant immigration [J].
Li, Guihua ;
Wang, Wendi ;
Jin, Zhen .
CHAOS SOLITONS & FRACTALS, 2006, 30 (04) :1012-1019
[10]  
LIU H, 2005, J APPL MATH, P301