Transmission Dynamics of a Two-City SIR Epidemic Model with Transport-Related Infections

被引:5
作者
Chen, Yao [1 ,2 ,3 ]
Yan, Mei [2 ]
Xiang, Zhongyi [1 ,2 ]
机构
[1] Key Lab Biol Resources Protect & Utilizat Hubei P, Enshi 445000, Hubei, Peoples R China
[2] Hubei Univ Nationalities, Dept Math, Enshi 445000, Hubei, Peoples R China
[3] Hubei Univ Nationalities, Coll Sci & Technol, Enshi 445000, Hubei, Peoples R China
关键词
PATCHY ENVIRONMENT; DISEASE;
D O I
10.1155/2014/764278
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A two-city SIR epidemic model with transport-related infections is proposed. Some good analytical results are given for this model. If the basic reproduction number R-0 gamma <= 1, there exists a disease-free equilibrium which is globally asymptotically stable. There exists an endemic equilibrium which is locally asymptotically stable if the basic reproduction number R-0 gamma > 1. We also show the permanence of this SIR model. In addition, sufficient conditions are established for global asymptotic stability of the endemic equilibrium.
引用
收藏
页数:12
相关论文
共 19 条
  • [1] Modeling the Dynamics of an Epidemic under Vaccination in Two Interacting Populations
    Ahmed, Ibrahim H. I.
    Witbooi, Peter J.
    Patidar, Kailash
    [J]. JOURNAL OF APPLIED MATHEMATICS, 2012,
  • [2] Asymptotic profiles of the steady states for an sis epidemic patch model
    Allen, L. J. S.
    Bolker, B. M.
    Lou, Y.
    Nevai, A. L.
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2007, 67 (05) : 1283 - 1309
  • [3] Quarantine in a multi-species epidemic model with spatial dynamics
    Arino, Julien
    Jordan, Richard
    van den Driessche, P.
    [J]. MATHEMATICAL BIOSCIENCES, 2007, 206 (01) : 46 - 60
  • [4] Spreading disease with transport-related infection
    Cui, JA
    Takeuchi, Y
    Saito, Y
    [J]. JOURNAL OF THEORETICAL BIOLOGY, 2006, 239 (03) : 376 - 390
  • [5] Global Stability of Multigroup Dengue Disease Transmission Model
    Ding, Deqiong
    Wang, Xueping
    Ding, Xiaohua
    [J]. JOURNAL OF APPLIED MATHEMATICS, 2012,
  • [6] Stochastic SIRS model under regime switching
    Han, Zhixia
    Zhao, Jiandong
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2013, 14 (01) : 352 - 364
  • [7] Contribution to the mathematical theory of epidemics
    Kermack, WO
    McKendrick, AG
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-CONTAINING PAPERS OF A MATHEMATICAL AND PHYSICAL CHARACTER, 1927, 115 (772) : 700 - 721
  • [8] Analysis of the permanence of an SIR epidemic model with logistic process and distributed time delay
    Li, Chun-Hsien
    Tsai, Chiung-Chiou
    Yang, Suh-Yuh
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (09) : 3696 - 3707
  • [9] Global stability of an SEIR epidemic model with constant immigration
    Li, Guihua
    Wang, Wendi
    Jin, Zhen
    [J]. CHAOS SOLITONS & FRACTALS, 2006, 30 (04) : 1012 - 1019
  • [10] LIU H, 2005, J APPL MATH, P301