Bioorganic nanodots for non-volatile memory devices

被引:12
作者
Amdursky, Nadav [1 ]
Shalev, Gil [1 ]
Handelman, Amir [1 ]
Litsyn, Simon [1 ,2 ]
Natan, Amir [1 ]
Roizin, Yakov [1 ,3 ]
Rosenwaks, Yossi [1 ]
Szwarcman, Daniel [1 ,2 ]
Rosenman, Gil [1 ,2 ]
机构
[1] Tel Aviv Univ, Iby & Aladar Fleischman Fac Engn, Sch Elect Engn, IL-69978 Tel Aviv, Israel
[2] StoreDot LTD, Ramat Gan, Israel
[3] TowerJazz, IL-23105 Migdal Haemeq, Israel
来源
APL MATERIALS | 2013年 / 1卷 / 06期
基金
俄罗斯基础研究基金会;
关键词
PEPTIDE NANOTUBES; SILICON; NANOCRYSTALS; FABRICATION; OXIDE; TRAP;
D O I
10.1063/1.4838815
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In recent years we are witnessing an intensive integration of bio-organic nanomaterials in electronic devices. Here we show that the diphenylalanine bio-molecule can self-assemble into tiny peptide nanodots (PNDs) of similar to 2 nm size, and can be embedded into metal-oxide-semiconductor devices as charge storage nanounits in non-volatile memory. For that purpose, we first directly observe the crystallinity of a single PND by electron microscopy. We use these nanocrystalline PNDs units for the formation of a dense monolayer on SiO2 surface, and study the electron/hole trapping mechanisms and charge retention ability of the monolayer, followed by fabrication of PND-based memory cell device. (C) 2013 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] High-performance non-volatile CdS nanobelt-based floating nanodot gate memory
    Wu, P. C.
    Dai, Y.
    Ye, Y.
    Fang, X. L.
    Sun, T.
    Liu, C.
    Dai, L.
    JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (21) : 4404 - 4408
  • [32] Non-volatile memory transistor based on Pt nanocrystals with negative differencial resistance
    Mikhelashvili, V.
    Shneider, Y.
    Meyler, B.
    Atiya, G.
    Yofis, S.
    Cohen-Hyams, T.
    Kaplan, W. D.
    Lisiansky, M.
    Roizin, Y.
    Salzman, J.
    Eisenstein, G.
    JOURNAL OF APPLIED PHYSICS, 2012, 112 (02)
  • [33] Non-volatile memory and negative photoconductivity in a metal-insulator-semiconductor diode with embedded Co nanoparticles
    Mikhelashvili, V.
    Atiya, G.
    Kauffmann, Y.
    Shneider, Y.
    Ankonina, G.
    Zeevi, G.
    Yaish, Y.
    Capua, A.
    Eisenstein, G.
    JOURNAL OF APPLIED PHYSICS, 2018, 123 (22)
  • [34] Novel Molecular Non-Volatile Memory: Application of Redox-Active Molecules
    Zhu, Hao
    Li, Qiliang
    APPLIED SCIENCES-BASEL, 2016, 6 (01):
  • [35] Magnetic nanostructures for non-volatile memories
    Soltys, J.
    Gazi, S.
    Fedor, J.
    Tobik, J.
    Precner, M.
    Cambel, V.
    MICROELECTRONIC ENGINEERING, 2013, 110 : 474 - 478
  • [36] Charge storage characteristics of ultra-small Pt nanoparticle embedded GaAs based non-volatile memory
    Jeff, R. C., Jr.
    Yun, M.
    Ramalingam, B.
    Lee, B.
    Misra, V.
    Triplett, G.
    Gangopadhyay, S.
    APPLIED PHYSICS LETTERS, 2011, 99 (07)
  • [37] Graphene oxide-based non-volatile organic field effect memory transistors
    Alaabdlqader, Homod S.
    Sleiman, Adam
    Sayers, Paul
    Mabrook, Mohammed F.
    IET CIRCUITS DEVICES & SYSTEMS, 2015, 9 (01) : 67 - 71
  • [38] An organic ambipolar charge trapping non-volatile memory device based on double heterojunctions
    Zhang, Peng
    Jacques, Emmanuel
    Pichon, Laurent
    Bonnaud, Olivier
    THIN SOLID FILMS, 2022, 759
  • [39] Ge-doped Hafnia-based Dielectrics for Non-Volatile Memory Applications
    Khomenkova, L.
    Portier, X.
    Carrada, M.
    Bonafos, C.
    Sahu, B. S.
    Slaoui, A.
    Gourbilleau, F.
    DIELECTRICS FOR NANOSYSTEMS 5: MATERIALS SCIENCE, PROCESSING, RELIABILITY, AND MANUFACTURING -AND-TUTORIALS IN NANOTECHNOLOGY: MORE THAN MOORE - BEYOND CMOS EMERGING MATERIALS AND DEVICES, 2012, 45 (03): : 331 - 344
  • [40] Nitrogen and aluminum-nitrogen doped graphene for non-volatile resistive memory applications
    Gonzalez-Rodriguez, Roberto
    Hathaway, Evan
    Hurley, Noah
    Lin, Yuankun
    Cui, Jingbiao
    MATERIALS TODAY COMMUNICATIONS, 2023, 37