Systematic evaluation of the impact of defacing on quality and volumetric assessments on T1-weighted MR-images

被引:14
作者
Bhalerao, Gaurav Vivek [1 ,2 ,4 ]
Parekh, Pravesh [1 ,3 ,4 ]
Saini, Jitender [5 ]
Venkatasubramanian, Ganesan [1 ,2 ,4 ]
John, John P. [1 ,3 ,4 ]
机构
[1] Natl Inst Mental Hlth & Neurosci NIMHANS, ADBS Neuroimaging Ctr, Bangalore, Karnataka, India
[2] Natl Inst Mental Hlth & Neurosci NIMHANS, Translat Psychiat Lab, Bangalore, Karnataka, India
[3] Natl Inst Mental Hlth & Neurosci NIMHANS, Multimodal Brain Image Anal Lab, Bangalore, Karnataka, India
[4] Natl Inst Mental Hlth & Neurosci NIMHANS, Dept Psychiat, Bangalore, Karnataka, India
[5] Natl Inst Mental Hlth & Neurosci NIMHANS, Dept Neuroimaging & Intervent Radiol, Bangalore, Karnataka, India
关键词
Defacing; Structural MRI; Reproducibility; Neuroimaging; Quality assessment; Quantitative assessment; AUTOMATIC DETECTION;
D O I
10.1016/j.neurad.2021.03.001
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Background and purpose. - Facial features can be potentially reconstructed from structural magnetic resonance images, thereby compromising the confidentiality of study participants. Defacing methods can be applied to MRI images to ensure privacy of study participants. These methods remove facial features, thereby rendering the image unidentifiable. It is commonly assumed that defacing would not have any impact on quantitative assessments of the brain. In this study, we have assessed the impact of different defacing methods on quality and volumetric estimates. Materials and methods. - We performed SPM-, Freesurfer-, pydeface, and FSL-based defacing on 30 T1weighted images. We statistically compared the change in quality measurements (from MRIQC) and volumes (from SPM, CAT, and Freesurfer) between non-defaced and defaced images. We also calculated the Dice coefficient of each tissue class between non-defaced and defaced images. Results. - Almost all quality measurements and tissue volumes changed after defacing, irrespective of the method used. All tissue volumes decreased post-defacing for CAT, but no such consistent trend was seen for SPM and Freesurfer. Dice coefficients indicated that segmentations are relatively robust; however, partial volumes might be affected leading to changed volumetric estimates. Conclusion. - In this study, we demonstrated that volumes and quality measurements get affected differently by defacing methods. It is likely that this will have a significant impact on the reproducibility of experiments. We provide suggestions on ways to minimize the impact of defacing on outcome measurements. Our results warrant the need for robust handling of defaced images at different steps of image processing.
引用
收藏
页码:250 / 257
页数:8
相关论文
共 25 条
[1]   Image processing and Quality Control for the first 10,000 brain imaging datasets from UK Biobank [J].
Alfaro-Almagro, Fidel ;
Jenkinson, Mark ;
Bangerter, Neal K. ;
Andersson, Jesper L. R. ;
Griffanti, Ludovica ;
Douaud, Gwenaelle ;
Sotiropoulos, Stamatios N. ;
Jbabdi, Saad ;
Hernandez-Fernandez, Moises ;
Vallee, Emmanuel ;
Vidaurre, Diego ;
Webster, Matthew ;
McCarthy, Paul ;
Rorden, Christopher ;
Daducci, Alessandro ;
Alexander, Daniel C. ;
Zhang, Hui ;
Dragonu, Iulius ;
Matthews, Paul M. ;
Miller, Karla L. ;
Smith, Stephen M. .
NEUROIMAGE, 2018, 166 :400-424
[2]   Open science challenges, benefits and tips in early career and beyond [J].
Allen, Christopher ;
Mehler, David M. A. .
PLOS BIOLOGY, 2019, 17 (05)
[3]  
Analysis Group FMRIB Oxford UK, 2019, FMRIB SOFTW LIB 6 0
[4]   Automatic detection of the mid-sagittal plane in 3-D brain images [J].
Ardekani, BA ;
Kershaw, J ;
Braun, M ;
Kanno, I .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 1997, 16 (06) :947-952
[5]  
Ardekani BA, 2018, ACPCDETECT 2 0
[6]  
Ardekani BA, 2018, BIORXIV, DOI [10.1101/306811, DOI 10.1101/306811]
[7]   Model-based automatic detection of the anterior and posterior commissures on MRI scans [J].
Ardekani, Babak A. ;
Bachman, Alvin H. .
NEUROIMAGE, 2009, 46 (03) :677-682
[8]   A technique for the deidentification of structural brain MR images [J].
Bischoff-Grethe, Amanda ;
Ozyurt, I. Burak ;
Busa, Evelina ;
Quinn, Brian T. ;
Fennema-Notestine, Christine ;
Clark, Camellia P. ;
Morris, Shaunna ;
Bondi, Mark W. ;
Jernigan, Terry L. ;
Dale, Anders M. ;
Brown, Gregory G. ;
Fischl, Bruce .
HUMAN BRAIN MAPPING, 2007, 28 (09) :892-903
[9]  
Dahnke R, 2016, Computational Anatomy Toolbox CAT12
[10]   Facing privacy in neuroimaging: removing facial features degrades performance of image analysis methods [J].
de Sitter, A. ;
Visser, M. ;
Brouwer, I. ;
Cover, K. S. ;
van Schijndel, R. A. ;
Eijgelaar, R. S. ;
Mueller, D. M. J. ;
Ropele, S. ;
Kappos, L. ;
Rovira, A. ;
Filippi, M. ;
Enzinger, C. ;
Frederiksen, J. ;
Ciccarelli, O. ;
Guttmann, C. R. G. ;
Wattjes, M. P. ;
Witte, M. G. ;
Hamer, P. C. de Witt ;
Barkhof, F. ;
Vrenken, H. .
EUROPEAN RADIOLOGY, 2020, 30 (02) :1062-1074