Complexity of Proximal Augmented Lagrangian for Nonconvex Optimization with Nonlinear Equality Constraints

被引:14
|
作者
Xie, Yue [1 ]
Wright, Stephen J. [2 ]
机构
[1] Univ Wisconsin, Wisconsin Inst Discovery, 330 N Orchard St, Madison, WI 53715 USA
[2] Univ Wisconsin, Comp Sci Dept, 1210 W Dayton St, Madison, WI 53706 USA
基金
美国国家科学基金会;
关键词
Optimization with nonlinear equality constraints; Nonconvex optimization; Proximal augmented Lagrangian; Complexity analysis; Newton-conjugate-gradient; QUALIFICATION; OPTIMALITY;
D O I
10.1007/s10915-021-01409-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze worst-case complexity of a Proximal augmented Lagrangian (Proximal AL) framework for nonconvex optimization with nonlinear equality constraints. When an approximate first-order (second-order) optimal point is obtained in the subproblem, an epsilon first-order (second-order) optimal point for the original problem can be guaranteed within O(1/epsilon(2-eta)) outer iterations (where eta is a user-defined parameter with eta is an element of[0,2] for the first-order result and eta is an element of[1,2] for the second-order result) when the proximal term coefficient beta and penalty parameter rho satisfy beta=O(epsilon(eta)) and rho=Omega(1/epsilon(eta)), respectively. We also investigate the total iteration complexity and operation complexity when a Newton-conjugate-gradient algorithm is used to solve the subproblems.Finally, we discuss an adaptive scheme for determining a value of the parameter rho that satisfies the requirements of the analysis.
引用
收藏
页数:30
相关论文
共 50 条