Reduction of the secondary neutron dose in passively scattered proton radiotherapy, using an optimized pre-collimator/collimator

被引:45
作者
Brenner, David J. [1 ]
Elliston, Carl D. [1 ]
Hall, Eric J. [1 ]
Paganetti, Harald [2 ]
机构
[1] Columbia Univ, Med Ctr, Ctr Radiol Res, New York, NY 10032 USA
[2] Massachusetts Gen Hosp, Dept Radiat Oncol, Francis H Burr Proton Therapy Ctr, Boston, MA 02114 USA
关键词
MODULATED RADIATION-THERAPY; MONTE-CARLO SIMULATIONS; BEAM DELIVERY-SYSTEM; PROSTATE-CANCER; STRAY RADIATION; HUMAN-LYMPHOCYTES; BOMB SURVIVORS; 2ND CANCERS; EQUIVALENT; COLLIMATOR;
D O I
10.1088/0031-9155/54/20/003
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Proton radiotherapy represents a potential major advance in cancer therapy. Most current proton beams are spread out to cover the tumor using passive scattering and collimation, resulting in an extra whole-body high-energy neutron dose, primarily from proton interactions with the final collimator. There is considerable uncertainty as to the carcinogenic potential of low doses of high-energy neutrons, and thus we investigate whether this neutron dose can be significantly reduced without major modifications to passively scattered proton beam lines. Our goal is to optimize the design features of a patient-specific collimator or pre-collimator/collimator assembly. There are a number of often contradictory design features, in terms of geometry and material, involved in an optimal design. For example, plastic or hybrid plastic/metal collimators have a number of advantages. We quantify these design issues, and investigate the practical balances that can be achieved to significantly reduce the neutron dose without major alterations to the beamline design or function. Given that the majority of proton therapy treatments, at least for the next few years, will use passive scattering techniques, reducing the associated neutron-related risks by simple modifications of the collimator assembly design is a desirable goal.
引用
收藏
页码:6065 / 6078
页数:14
相关论文
共 60 条
[1]   Secondary neutron and photon dose in proton therapy [J].
Agosteo, S ;
Birattari, C ;
Caravaggio, M ;
Silari, M ;
Tosi, G .
RADIOTHERAPY AND ONCOLOGY, 1998, 48 (03) :293-305
[2]  
Allison J., 2007, Nuclear Physics News, V17, P20, DOI [DOI 10.1080/10506890701404297, 10.1080/10506890701404297]
[3]   EFFECTS OF COLLIMATOR SCATTERING ON DOSE FOR A 45 MEV BETATRON [J].
BAGNE, F .
PHYSICS IN MEDICINE AND BIOLOGY, 1974, 19 (02) :236-236
[4]   Secondary dose exposures during 200 MeV proton therapy [J].
Binns, PJ ;
Hough, JH .
RADIATION PROTECTION DOSIMETRY, 1997, 70 (1-4) :441-444
[5]   THE 62 MEV PROTON-BEAM FOR THE TREATMENT OF OCULAR MELANOMA AT CLATTERBRIDGE [J].
BONNETT, DE ;
KACPEREK, A ;
SHEEN, MA ;
GOODALL, R ;
SAXTON, TE .
BRITISH JOURNAL OF RADIOLOGY, 1993, 66 (790) :907-914
[6]   Secondary neutrons in clinical proton radiotherapy: A charged issue [J].
Brenner, David J. ;
Hatt, Eric J. .
RADIOTHERAPY AND ONCOLOGY, 2008, 86 (02) :165-170
[7]   Therapeutic step and shoot proton beam spot-scanning with a multi-leaf collimator: A Monte Carlo study [J].
Bues, M ;
Newhauser, WD ;
Titt, U ;
Smith, AR .
RADIATION PROTECTION DOSIMETRY, 2005, 115 (1-4) :164-169
[8]   ENDF/B-VII.0: Next generation evaluated nuclear data library for nuclear science and technology [J].
Chadwick, M. B. ;
Oblozinsky, P. ;
Herman, M. ;
Greene, N. M. ;
McKnight, R. D. ;
Smith, D. L. ;
Young, P. G. ;
MacFarlane, R. E. ;
Hale, G. M. ;
Frankle, S. C. ;
Kahler, A. C. ;
Kawano, T. ;
Little, R. C. ;
Madland, D. G. ;
Moller, P. ;
Mosteller, R. D. ;
Page, P. R. ;
Talou, P. ;
Trellue, H. ;
White, M. C. ;
Wilson, W. B. ;
Arcilla, R. ;
Dunford, C. L. ;
Mughabghab, S. F. ;
Pritychenko, B. ;
Rochman, D. ;
Sonzogni, A. A. ;
Lubitz, C. R. ;
Trumbull, T. H. ;
Weinman, J. P. ;
Brown, D. A. ;
Cullen, D. E. ;
Heinrichs, D. P. ;
McNabb, D. P. ;
Derrien, H. ;
Dunn, M. E. ;
Larson, N. M. ;
Leal, L. C. ;
Carlson, A. D. ;
Block, R. C. ;
Briggs, J. B. ;
Cheng, E. T. ;
Huria, H. C. ;
Zerkle, M. L. ;
Kozier, K. S. ;
Courcelle, A. ;
Pronyaev, V. ;
van der Marck, S. C. .
NUCLEAR DATA SHEETS, 2006, 107 (12) :2931-3059
[9]   Significant reduction of normal tissue dose by proton radiotherapy compared with three-dimensional conformal or intensity-modulated radiation therapy in Stage I or Stage III non-small-cell lung cancer [J].
Chang, Joe Y. ;
Zhang, Xiaodong ;
Wang, Xiaochun ;
Kang, Yixiu ;
Riley, Beverly ;
Bilton, Stephen ;
Mohan, Radhe ;
Komaki, Ritsuko ;
Cox, James D. .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2006, 65 (04) :1087-1096
[10]   Experimental studies and nuclear model calculations on the formation of radioactive products in interactions of medium energy protons with copper, zinc and brass: Estimation of collimator activation in proton therapy facilities [J].
Fassbender, M ;
Shubin, YN ;
Lunev, VP ;
Qaim, SM .
APPLIED RADIATION AND ISOTOPES, 1997, 48 (09) :1221-1230