Bcn-symmetric Abelian functions

被引:60
作者
Rains, Eric M. [1 ]
机构
[1] Univ Calif Davis, Dept Math, Davis, CA 95616 USA
关键词
D O I
10.1215/S0012-7094-06-13513-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct a family of BCn-symmetric biorthogonal abelian functions generalizing Koornwinder's orthogonal polynomials (see [10]) and prove a number of their properties, most notably analogues of Macdonald's conjectures. The construction is based on a direct construction for a special case generalizing Okounkov's interpolation polynomials (see [13]). We show that these interpolation functions satisfy a collection of generalized hypergeometric identities, including new multivariate elliptic analogues of Jackson's summation and Bailey's transformation.
引用
收藏
页码:99 / 180
页数:82
相关论文
共 31 条
[1]   A Q-BETA INTEGRAL ON THE UNIT-CIRCLE AND SOME BIORTHOGONAL RATIONAL FUNCTIONS [J].
ALSALAM, WA ;
ISMAIL, MEH .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 121 (02) :553-561
[2]  
[Anonymous], CONT MATH
[3]  
ASKEY R, 1985, MEM AM MATH SOC, V54, P1
[4]  
Baxter R J., 1982, EXACTLY SOLVED MODEL
[5]  
DATE E, 1988, ADV STUD PURE MATH, V16, P17
[6]  
Frenkel Igor B., 1997, ARNOLD GELFAND MATH, P171
[7]  
GARSIA A. M., 1999, SEM LOTHAR COMBIN, V42
[8]  
Knop F, 1997, COMMENT MATH HELV, V72, P84
[9]  
Koornwinder T.H., 1992, Contemp. Math., V138, P189, DOI [10.1090/conm/138/1199128., DOI 10.1090/CONM/138/1199128]
[10]   ROOT SYSTEMS AND ELLIPTIC CURVES [J].
LOOIJENGA, E .
INVENTIONES MATHEMATICAE, 1976, 38 (01) :17-32