A TWO-CLASS HYPER-SPHERICAL AUTOENCODER FOR SUPERVISED ANOMALY DETECTION

被引:0
作者
Kawachi, Yuta [1 ]
Koizumi, Yuma [1 ]
Murata, Shin [1 ]
Harada, Noboru [1 ]
机构
[1] NTT Media Intelligence Labs, Tokyo, Japan
来源
2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP) | 2019年
关键词
Anomaly detection; auto-encoder; von Mises-Fisher distribution;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Supervised anomaly detection has been a tough problem due to its necessity of special handling of unseen anomalies. In this paper, we present a heuristic implementation of variational auto-encoder with von-Mises Fisher prior applied to a supervised anomaly detector. The closed latent space like sphere is suitable for detecting unseen anomalies because we have a possibility to "fill" the space with seen training samples. If it ideally works, the reconstruction error will be high for all unseen anomalies. Experiments show that our model can separate normal and anomaly samples in the spherical latent space. It is also shown that he proposed model improves the performance for seen anomalies without degrading the performance for unseen anomalies.
引用
收藏
页码:3047 / 3051
页数:5
相关论文
共 28 条
[1]  
An J., 2015, Special Lecture on IE, V1, P1
[2]  
Aygun R. C., 2017, 2017 IEEE 4 INT C CY, P193, DOI [10.1109/CSCloud.2017.39, DOI 10.1109/CSCLOUD.2017.39]
[3]  
Cohen T.S., 2018, ICLR
[4]  
Davidson Tim R., 2018, P UAI
[5]  
Diethe Tom, 2015, ARXIV150207104
[6]   A Discriminative Metric Learning Based Anomaly Detection Method [J].
Du, Bo ;
Zhang, Liangpei .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (11) :6844-6857
[7]   Toward Supervised Anomaly Detection [J].
Goernitz, Nico ;
Kloft, Marius ;
Rieck, Konrad ;
Brefeld, Ulf .
JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2013, 46 :235-262
[8]  
Guu K., 2018, Transactions of the Association for Computational Linguistics, V6, P437, DOI [DOI 10.1162/TACLA00030, 10.1162/tacl_a_00030]
[9]   A survey of outlier detection methodologies [J].
Hodge V.J. ;
Austin J. .
Artificial Intelligence Review, 2004, 22 (2) :85-126
[10]  
Kawachi Y, 2018, P ICASSP